×

A unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range. (English) Zbl 1433.76031

Summary: Motivated by Kolmogorov’s theory of turbulence we present a unified approach to the regularity problems for the 3D Navier-Stokes and Euler equations. We introduce a dissipation wavenumber \(\Lambda (t)\) that separates low modes where the Euler dynamics is predominant from the high modes where the viscous forces take over. Then using an indifferent to the viscosity technique we obtain a new regularity criterion which is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the viscous case, and reduces to the Beale-Kato-Majda criterion in the inviscid case. In the viscous case we prove that Leray-Hopf solutions are regular provided \(\Lambda\in L^{5/2}\), which improves our previous \(\Lambda\in L^\infty\) condition. We also show that \(\Lambda\in L^1\) for all Leray-Hopf solutions. Finally, we prove that Leray-Hopf solutions are regular when the time-averaged spatial intermittency is small, i.e., close to Kolmogorov’s regime.

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35Q30 Navier-Stokes equations
35Q31 Euler equations
76F02 Fundamentals of turbulence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amann H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2(1), 16-98 (2000) · Zbl 0989.35107 · doi:10.1007/s000210050018
[2] Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61-66 (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyzenskaja-P]rodi-Serrin criteria. http://arxiv.org/abs/0912.2969 · Zbl 1270.35334
[4] Cao C., Titi E.S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57(6), 2643-2661 (2008) · Zbl 1159.35053 · doi:10.1512/iumj.2008.57.3719
[5] Cheskidov A., Shvydkoy R.: The regularity of weak solutions of the 3D Navier-Stokes equations in \[{B^{-1}_{\infty,\infty}}B\]∞,∞-1 . Arch. Ration. Mech. Anal. 195(1), 159-169 (2010) · Zbl 1186.35137 · doi:10.1007/s00205-009-0265-2
[6] da Veiga H.B.: A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2(2), 99-106 (2000) · Zbl 0970.35105 · doi:10.1007/PL00000949
[7] Frisch, U.: Turbulence. Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov · Zbl 0970.35105
[8] Iskauriaza L., Serëgin G.A., Shverak \[V.: {L_{3,\infty}}\] L3,∞ -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3-44 (2003) · Zbl 1064.35134 · doi:10.4213/rm609
[9] Kato T.: Nonstationary ows of viscous and ideal uids in R3. J. Funct. Anal. 9, 296-305 (1972) · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1
[10] Kolmogoroff A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301-305 (1941) · Zbl 0025.37602
[11] Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242(2), 251-278 (2002) · Zbl 1055.35087 · doi:10.1007/s002090100332
[12] Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[13] Planchon F.: An extension of the Beale-Kato-Majda criterion for the Euler equations. Comm. Math. Phys. 232(2), 319-326 (2003) · Zbl 1022.35048 · doi:10.1007/s00220-002-0744-x
[14] Tao T.: Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE 2(3), 361-366 (2009) · Zbl 1190.35177 · doi:10.2140/apde.2009.2.361
[15] Temam, R.: Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition · Zbl 0568.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.