Kukavica, Igor; Nguyen, Trinh T.; Vicol, Vlad; Wang, Fei On the Euler\(+\)Prandtl expansion for the Navier-Stokes equations. (English) Zbl 07514298 J. Math. Fluid Mech. 24, No. 2, Paper No. 47, 46 p. (2022). MSC: 76-XX PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Math. Fluid Mech. 24, No. 2, Paper No. 47, 46 p. (2022; Zbl 07514298) Full Text: DOI OpenURL
Nguyen, Huy Q. Remarks on the solution map for Yudovich solutions of the Euler equations. (English) Zbl 07496935 J. Math. Fluid Mech. 24, No. 2, Paper No. 44, 9 p. (2022). MSC: 76-XX PDF BibTeX XML Cite \textit{H. Q. Nguyen}, J. Math. Fluid Mech. 24, No. 2, Paper No. 44, 9 p. (2022; Zbl 07496935) Full Text: DOI OpenURL
Peng, Yue-Jun; Zhao, Liang Global convergence to compressible full Navier-Stokes equations by approximation with Oldroyd-type constitutive laws. (English) Zbl 07488938 J. Math. Fluid Mech. 24, No. 2, Paper No. 29, 17 p. (2022). MSC: 35Qxx 35B25 35L60 35Q30 76A05 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{L. Zhao}, J. Math. Fluid Mech. 24, No. 2, Paper No. 29, 17 p. (2022; Zbl 07488938) Full Text: DOI OpenURL
Wang, Zhao; Hu, Yuxi Low Mach number limit of full compressible Navier-Stokes equations with revised Maxwell law. (English) Zbl 1480.35014 J. Math. Fluid Mech. 24, No. 1, Paper No. 6, 12 p. (2022). MSC: 35B25 35Q30 76N10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Y. Hu}, J. Math. Fluid Mech. 24, No. 1, Paper No. 6, 12 p. (2022; Zbl 1480.35014) Full Text: DOI arXiv OpenURL
Xu, Fei; Zhang, Yong; Li, Fengquan On the symmetry and recovery of steady continuously stratified periodic water waves. (English) Zbl 1477.35275 J. Math. Fluid Mech. 23, No. 4, Paper No. 90, 13 p. (2021). MSC: 35Q86 35Q31 76B70 86A05 35J25 35J60 35A01 PDF BibTeX XML Cite \textit{F. Xu} et al., J. Math. Fluid Mech. 23, No. 4, Paper No. 90, 13 p. (2021; Zbl 1477.35275) Full Text: DOI arXiv OpenURL
Wan, Jie Multiscale rotating vortex patches for 2D Euler flows in a disk. (English) Zbl 1475.76017 J. Math. Fluid Mech. 23, No. 4, Paper No. 101, 19 p. (2021). MSC: 76B47 76B03 76M30 76U05 35Q31 PDF BibTeX XML Cite \textit{J. Wan}, J. Math. Fluid Mech. 23, No. 4, Paper No. 101, 19 p. (2021; Zbl 1475.76017) Full Text: DOI OpenURL
Choi, Young-Pil; Jung, Jinwook On the Cauchy problem for the pressureless Euler-Navier-Stokes system in the whole space. (English) Zbl 07409527 J. Math. Fluid Mech. 23, No. 4, Paper No. 99, 16 p. (2021). MSC: 76D03 76B03 35Q30 35Q31 PDF BibTeX XML Cite \textit{Y.-P. Choi} and \textit{J. Jung}, J. Math. Fluid Mech. 23, No. 4, Paper No. 99, 16 p. (2021; Zbl 07409527) Full Text: DOI arXiv OpenURL
Chaudhuri, Nilasis Limit of a consistent approximation to the complete compressible Euler system. (English) Zbl 1481.76177 J. Math. Fluid Mech. 23, No. 4, Paper No. 97, 21 p. (2021). Reviewer: Václav Mácha (Praha) MSC: 76N10 35Q31 PDF BibTeX XML Cite \textit{N. Chaudhuri}, J. Math. Fluid Mech. 23, No. 4, Paper No. 97, 21 p. (2021; Zbl 1481.76177) Full Text: DOI arXiv OpenURL
Jeong, In-Jee Loss of regularity for the 2D Euler equations. (English) Zbl 07409523 J. Math. Fluid Mech. 23, No. 4, Paper No. 95, 11 p. (2021). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{I.-J. Jeong}, J. Math. Fluid Mech. 23, No. 4, Paper No. 95, 11 p. (2021; Zbl 07409523) Full Text: DOI arXiv OpenURL
Breit, D.; Moyo, T. C. Dissipative solutions to the stochastic Euler equations. (English) Zbl 1471.60096 J. Math. Fluid Mech. 23, No. 3, Paper No. 80, 23 p. (2021). MSC: 60H15 35R60 76B03 35Q31 76D05 35D40 PDF BibTeX XML Cite \textit{D. Breit} and \textit{T. C. Moyo}, J. Math. Fluid Mech. 23, No. 3, Paper No. 80, 23 p. (2021; Zbl 1471.60096) Full Text: DOI arXiv OpenURL
Lai, Geng Global continuous sonic-supersonic flows in two-dimensional semi-infinite divergent ducts. (English) Zbl 07388755 J. Math. Fluid Mech. 23, No. 3, Paper No. 77, 30 p. (2021). MSC: 35Q31 35L65 35L60 35L67 76G25 76J20 35A01 PDF BibTeX XML Cite \textit{G. Lai}, J. Math. Fluid Mech. 23, No. 3, Paper No. 77, 30 p. (2021; Zbl 07388755) Full Text: DOI OpenURL
Cao, Daomin; Wang, Guodong Nonlinear stability of planar vortex patches in an ideal fluid. (English) Zbl 1467.76032 J. Math. Fluid Mech. 23, No. 3, Paper No. 58, 16 p. (2021). MSC: 76E30 76B47 76M30 35Q31 PDF BibTeX XML Cite \textit{D. Cao} and \textit{G. Wang}, J. Math. Fluid Mech. 23, No. 3, Paper No. 58, 16 p. (2021; Zbl 1467.76032) Full Text: DOI arXiv OpenURL
Caggio, Matteo; Kreml, Ondřej; Nečasová, Šárka; Roy, Arnab; Tang, Tong Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid body interaction. (English) Zbl 1468.35130 J. Math. Fluid Mech. 23, No. 3, Paper No. 50, 24 p. (2021). MSC: 35Q35 35Q31 35R37 76B99 74F10 35A02 35R06 PDF BibTeX XML Cite \textit{M. Caggio} et al., J. Math. Fluid Mech. 23, No. 3, Paper No. 50, 24 p. (2021; Zbl 1468.35130) Full Text: DOI arXiv OpenURL
Wu, Xinglong Isentropic approximation and Gevrey regularity for the full compressible Euler equations in \(\mathbb{R}^N\). (English) Zbl 1468.35123 J. Math. Fluid Mech. 23, No. 2, Paper No. 44, 16 p. (2021). MSC: 35Q31 35G25 35L65 35B65 35A20 76N10 PDF BibTeX XML Cite \textit{X. Wu}, J. Math. Fluid Mech. 23, No. 2, Paper No. 44, 16 p. (2021; Zbl 1468.35123) Full Text: DOI OpenURL
Saleva, Tomi; Tuomela, Jukka On the explicit solutions of separation of variables type for the incompressible 2D Euler equations. (English) Zbl 1465.35337 J. Math. Fluid Mech. 23, No. 2, Paper No. 39, 21 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q31 35A09 35A24 76B99 35N05 PDF BibTeX XML Cite \textit{T. Saleva} and \textit{J. Tuomela}, J. Math. Fluid Mech. 23, No. 2, Paper No. 39, 21 p. (2021; Zbl 1465.35337) Full Text: DOI arXiv OpenURL
Ghoshal, Shyam Sundar; Jana, Animesh Uniqueness of dissipative solutions to the complete Euler system. (English) Zbl 1460.35271 J. Math. Fluid Mech. 23, No. 2, Paper No. 34, 26 p. (2021). MSC: 35Q31 35B40 35L65 35L67 76N10 35D30 PDF BibTeX XML Cite \textit{S. S. Ghoshal} and \textit{A. Jana}, J. Math. Fluid Mech. 23, No. 2, Paper No. 34, 26 p. (2021; Zbl 1460.35271) Full Text: DOI arXiv OpenURL
Martin, Calin I. Some explicit solutions to the three-dimensional nonlinear water wave problem. (English) Zbl 1460.35273 J. Math. Fluid Mech. 23, No. 2, Paper No. 33, 9 p. (2021). MSC: 35Q31 76B15 76U05 PDF BibTeX XML Cite \textit{C. I. Martin}, J. Math. Fluid Mech. 23, No. 2, Paper No. 33, 9 p. (2021; Zbl 1460.35273) Full Text: DOI OpenURL
Muha, Boris; Nečasová, Šárka; Radošević, Ana A uniqueness result for 3D incompressible fluid-rigid body interaction problem. (English) Zbl 1460.35296 J. Math. Fluid Mech. 23, No. 1, Paper No. 1, 39 p. (2021). MSC: 35Q35 35Q31 74F10 76D03 76D05 35D30 35A01 PDF BibTeX XML Cite \textit{B. Muha} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 1, 39 p. (2021; Zbl 1460.35296) Full Text: DOI arXiv OpenURL
Cao, Daomin; Wang, Guodong; Zuo, Bijun Existence of steady symmetric vortex patch in a disk. (English) Zbl 1458.76019 J. Math. Fluid Mech. 23, No. 1, Paper No. 20, 13 p. (2021). MSC: 76B47 76M30 76B03 35Q31 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 20, 13 p. (2021; Zbl 1458.76019) Full Text: DOI arXiv OpenURL
Zhang, Yu; Pang, Yicheng Concentration and cavitation in the vanishing pressure limit of solutions to a simplified isentropic relativistic Euler equations. (English) Zbl 1458.35322 J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021). MSC: 35Q31 35L65 35L67 76N10 76N15 76L05 76P05 76Y05 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y. Pang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021; Zbl 1458.35322) Full Text: DOI OpenURL
Wei, Long Wave breaking, global existence and persistent decay for the Gurevich-Zybin system. (English) Zbl 1448.35505 J. Math. Fluid Mech. 22, No. 4, Paper No. 47, 14 p. (2020). MSC: 35Q75 35Q86 35Q31 35Q60 35L60 35B44 83C35 86A05 PDF BibTeX XML Cite \textit{L. Wei}, J. Math. Fluid Mech. 22, No. 4, Paper No. 47, 14 p. (2020; Zbl 1448.35505) Full Text: DOI OpenURL
Nečasová, Šárka; Tang, Tong On a singular limit for the compressible rotating Euler system. (English) Zbl 1448.35368 J. Math. Fluid Mech. 22, No. 3, Paper No. 43, 14 p. (2020). MSC: 35Q30 35Q86 76N06 76U60 76U65 76Q05 86A05 PDF BibTeX XML Cite \textit{Š. Nečasová} and \textit{T. Tang}, J. Math. Fluid Mech. 22, No. 3, Paper No. 43, 14 p. (2020; Zbl 1448.35368) Full Text: DOI arXiv OpenURL
Beirão da Veiga, Hugo; Yang, Jiaqi Onsager’s conjecture for the incompressible Euler equations in the Hölog spaces \(C^{0,\alpha}_\lambda (\bar{\Omega})\). (English) Zbl 1435.35288 J. Math. Fluid Mech. 22, No. 2, Paper No. 27, 10 p. (2020). MSC: 35Q31 76B03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, J. Math. Fluid Mech. 22, No. 2, Paper No. 27, 10 p. (2020; Zbl 1435.35288) Full Text: DOI arXiv OpenURL
Kuang, Jie; Zhao, Qin Global existence and stability of shock front solution to 1-D piston problem for exothermically reacting Euler equations. (English) Zbl 1434.35080 J. Math. Fluid Mech. 22, No. 2, Paper No. 22, 42 p. (2020). MSC: 35Q31 35B07 35B20 35D30 76J20 76L99 76N10 PDF BibTeX XML Cite \textit{J. Kuang} and \textit{Q. Zhao}, J. Math. Fluid Mech. 22, No. 2, Paper No. 22, 42 p. (2020; Zbl 1434.35080) Full Text: DOI OpenURL
Buttà, Paolo; Marchioro, Carlo Time evolution of concentrated vortex rings. (English) Zbl 1433.76029 J. Math. Fluid Mech. 22, No. 2, Paper No. 19, 21 p. (2020). MSC: 76B47 37N10 35Q31 PDF BibTeX XML Cite \textit{P. Buttà} and \textit{C. Marchioro}, J. Math. Fluid Mech. 22, No. 2, Paper No. 19, 21 p. (2020; Zbl 1433.76029) Full Text: DOI arXiv OpenURL
Chen, Qing Energy conservation in 2-D density-dependent Euler equations with regularity assumptions on the vorticity. (English) Zbl 1429.76036 J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{Q. Chen}, J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020; Zbl 1429.76036) Full Text: DOI OpenURL
Yuen, Manwai Blowup for projected 2-dimensional rotational \(\mathrm{C}^2\) solutions of compressible Euler equations. (English) Zbl 1431.35118 J. Math. Fluid Mech. 21, No. 4, Paper No. 54, 9 p. (2019). MSC: 35Q31 35B44 35L67 76U05 35B30 76N10 PDF BibTeX XML Cite \textit{M. Yuen}, J. Math. Fluid Mech. 21, No. 4, Paper No. 54, 9 p. (2019; Zbl 1431.35118) Full Text: DOI OpenURL
Zillinger, Christian On the forced Euler and Navier-Stokes equations: linear damping and modified scattering. (English) Zbl 1448.76117 J. Math. Fluid Mech. 21, No. 4, Paper No. 49, 24 p. (2019). MSC: 76M45 35Q31 35Q30 76B03 PDF BibTeX XML Cite \textit{C. Zillinger}, J. Math. Fluid Mech. 21, No. 4, Paper No. 49, 24 p. (2019; Zbl 1448.76117) Full Text: DOI arXiv OpenURL
Ding, Min Global existence of shock front solution to 1-D Piston problem for compressible Euler equations. (English) Zbl 1406.35248 J. Math. Fluid Mech. 20, No. 4, 2053-2071 (2018). MSC: 35Q31 35A01 35B35 35L65 35L67 35L04 76N10 76L05 PDF BibTeX XML Cite \textit{M. Ding}, J. Math. Fluid Mech. 20, No. 4, 2053--2071 (2018; Zbl 1406.35248) Full Text: DOI OpenURL
Latushkin, Yuri; Vasudevan, Shibi Eigenvalues of the linearized 2D Euler equations via Birman-Schwinger and Lin’s operators. (English) Zbl 1419.35154 J. Math. Fluid Mech. 20, No. 4, 1667-1680 (2018). MSC: 35Q31 35P05 76B03 PDF BibTeX XML Cite \textit{Y. Latushkin} and \textit{S. Vasudevan}, J. Math. Fluid Mech. 20, No. 4, 1667--1680 (2018; Zbl 1419.35154) Full Text: DOI arXiv OpenURL
Holmes, J.; Tığlay, F. Continuity properties of the solution map for the Euler-Poisson equation. (English) Zbl 1460.76660 J. Math. Fluid Mech. 20, No. 2, 757-769 (2018). MSC: 76N10 35Q31 PDF BibTeX XML Cite \textit{J. Holmes} and \textit{F. Tığlay}, J. Math. Fluid Mech. 20, No. 2, 757--769 (2018; Zbl 1460.76660) Full Text: DOI OpenURL
Wang, Y.-G.; Zhu, S.-Y. On the vanishing dissipation limit for the full Navier-Stokes-Fourier system with non-slip condition. (English) Zbl 1394.35331 J. Math. Fluid Mech. 20, No. 2, 393-419 (2018). MSC: 35Q30 76N20 35Q31 PDF BibTeX XML Cite \textit{Y. G. Wang} and \textit{S. Y. Zhu}, J. Math. Fluid Mech. 20, No. 2, 393--419 (2018; Zbl 1394.35331) Full Text: DOI OpenURL
Aasen, Ailo; Varholm, Kristoffer Traveling gravity water waves with critical layers. (English) Zbl 1388.35148 J. Math. Fluid Mech. 20, No. 1, 161-187 (2018). MSC: 35Q31 35B32 35C07 76B15 35B40 PDF BibTeX XML Cite \textit{A. Aasen} and \textit{K. Varholm}, J. Math. Fluid Mech. 20, No. 1, 161--187 (2018; Zbl 1388.35148) Full Text: DOI arXiv OpenURL
Cortissoz, Jean C.; Montero, Julio A. Lower bounds for possible singular solutions for the Navier-Stokes and Euler equations revisited. (English) Zbl 1388.35140 J. Math. Fluid Mech. 20, No. 1, 1-5 (2018). MSC: 35Q30 35B44 76D05 PDF BibTeX XML Cite \textit{J. C. Cortissoz} and \textit{J. A. Montero}, J. Math. Fluid Mech. 20, No. 1, 1--5 (2018; Zbl 1388.35140) Full Text: DOI arXiv OpenURL
Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan Global regularity for several incompressible fluid models with partial dissipation. (English) Zbl 1379.35255 J. Math. Fluid Mech. 19, No. 3, 423-444 (2017). MSC: 35Q35 35B45 35B65 76D03 76D09 35Q31 86A05 26A33 PDF BibTeX XML Cite \textit{J. Wu} et al., J. Math. Fluid Mech. 19, No. 3, 423--444 (2017; Zbl 1379.35255) Full Text: DOI OpenURL
Pooley, Benjamin C.; Robinson, James C. An Eulerian-Lagrangian form for the Euler equations in Sobolev spaces. (English) Zbl 1359.76041 J. Math. Fluid Mech. 18, No. 4, 783-794 (2016). MSC: 76B03 35Q31 35Q35 PDF BibTeX XML Cite \textit{B. C. Pooley} and \textit{J. C. Robinson}, J. Math. Fluid Mech. 18, No. 4, 783--794 (2016; Zbl 1359.76041) Full Text: DOI arXiv OpenURL
Cozzi, Elaine; Kelliher, James P. Incompressible Euler equations and the effect of changes at a distance. (English) Zbl 1432.76051 J. Math. Fluid Mech. 18, No. 4, 765-781 (2016). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{E. Cozzi} and \textit{J. P. Kelliher}, J. Math. Fluid Mech. 18, No. 4, 765--781 (2016; Zbl 1432.76051) Full Text: DOI arXiv OpenURL
Gal, Ciprian G. On an inviscid model for incompressible two-phase flows with nonlocal interaction. (English) Zbl 1359.35128 J. Math. Fluid Mech. 18, No. 4, 659-677 (2016). MSC: 35Q30 45K05 37L30 76D03 76T99 PDF BibTeX XML Cite \textit{C. G. Gal}, J. Math. Fluid Mech. 18, No. 4, 659--677 (2016; Zbl 1359.35128) Full Text: DOI HAL OpenURL
Itoh, Tsubasa; Miura, Hideyuki; Yoneda, Tsuyoshi Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner. (English) Zbl 1346.35154 J. Math. Fluid Mech. 18, No. 3, 531-537 (2016). MSC: 35Q31 76B03 PDF BibTeX XML Cite \textit{T. Itoh} et al., J. Math. Fluid Mech. 18, No. 3, 531--537 (2016; Zbl 1346.35154) Full Text: DOI arXiv Link OpenURL
Du, Lili; Duan, Ben Subsonic Euler flows with large vorticity through an infinitely long axisymmetric nozzle. (English) Zbl 1381.35126 J. Math. Fluid Mech. 18, No. 3, 511-530 (2016). MSC: 35Q31 35B30 35L60 76B03 PDF BibTeX XML Cite \textit{L. Du} and \textit{B. Duan}, J. Math. Fluid Mech. 18, No. 3, 511--530 (2016; Zbl 1381.35126) Full Text: DOI OpenURL
Lyons, Tony The pressure in a deep-water Stokes wave of greatest height. (English) Zbl 1347.35196 J. Math. Fluid Mech. 18, No. 2, 209-218 (2016). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q31 35Q35 76B15 76D07 76D33 35D30 PDF BibTeX XML Cite \textit{T. Lyons}, J. Math. Fluid Mech. 18, No. 2, 209--218 (2016; Zbl 1347.35196) Full Text: DOI arXiv OpenURL
Korobkov, Mikhail; Pileckas, Konstantin; Russo, Remigio Addendum to: “The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl”. (English) Zbl 1381.35120 J. Math. Fluid Mech. 18, No. 1, 207 (2016). MSC: 35Q30 76D03 76D05 35Q31 PDF BibTeX XML Cite \textit{M. Korobkov} et al., J. Math. Fluid Mech. 18, No. 1, 207 (2016; Zbl 1381.35120) Full Text: DOI OpenURL
Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin Approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions. (English) Zbl 1328.35153 J. Math. Fluid Mech. 17, No. 2, 327-340 (2015). MSC: 35Q30 76D05 76D10 76A10 35Q31 PDF BibTeX XML Cite \textit{M. C. Lopes Filho} et al., J. Math. Fluid Mech. 17, No. 2, 327--340 (2015; Zbl 1328.35153) Full Text: DOI arXiv OpenURL
Korobkov, Mikhail; Pileckas, Konstantin; Russo, Remigio The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl. (English) Zbl 1328.35151 J. Math. Fluid Mech. 17, No. 2, 287-293 (2015); addendum ibid. 18, No. 1, 207 (2016). MSC: 35Q30 76D03 76D05 35Q31 PDF BibTeX XML Cite \textit{M. Korobkov} et al., J. Math. Fluid Mech. 17, No. 2, 287--293 (2015; Zbl 1328.35151) Full Text: DOI arXiv OpenURL
Stuhlmeier, Raphael Gerstner’s water wave and mass transport. (English) Zbl 1327.76036 J. Math. Fluid Mech. 17, No. 4, 761-767 (2015). MSC: 76B15 35Q31 PDF BibTeX XML Cite \textit{R. Stuhlmeier}, J. Math. Fluid Mech. 17, No. 4, 761--767 (2015; Zbl 1327.76036) Full Text: DOI OpenURL
Chepyzhov, Vladimir; Zelik, Sergey Infinite energy solutions for dissipative Euler equations in \(\mathbb{R}^2\). (English) Zbl 1325.35137 J. Math. Fluid Mech. 17, No. 3, 513-532 (2015). MSC: 35Q30 35Q35 35Q31 PDF BibTeX XML Cite \textit{V. Chepyzhov} and \textit{S. Zelik}, J. Math. Fluid Mech. 17, No. 3, 513--532 (2015; Zbl 1325.35137) Full Text: DOI arXiv OpenURL
Dong, Hongjie; Li, Dong Global \(\dot H^1 \cap \dot H^{-1}\) solutions to a logarithmically regularized \(2D\) Euler equation. (English) Zbl 1320.35268 J. Math. Fluid Mech. 17, No. 1, 1-7 (2015). MSC: 35Q31 35A01 35B65 PDF BibTeX XML Cite \textit{H. Dong} and \textit{D. Li}, J. Math. Fluid Mech. 17, No. 1, 1--7 (2015; Zbl 1320.35268) Full Text: DOI arXiv OpenURL
Feireisl, Eduard Maximal dissipation and well-posedness for the compressible Euler system. (English) Zbl 1308.35190 J. Math. Fluid Mech. 16, No. 3, 447-461 (2014). MSC: 35Q31 35L65 PDF BibTeX XML Cite \textit{E. Feireisl}, J. Math. Fluid Mech. 16, No. 3, 447--461 (2014; Zbl 1308.35190) Full Text: DOI arXiv OpenURL
Cox, Graham The \(L^2\) essential spectrum of the 2D Euler operator. (English) Zbl 1308.76062 J. Math. Fluid Mech. 16, No. 3, 419-429 (2014). MSC: 76B99 35Q31 PDF BibTeX XML Cite \textit{G. Cox}, J. Math. Fluid Mech. 16, No. 3, 419--429 (2014; Zbl 1308.76062) Full Text: DOI arXiv OpenURL
Larios, Adam; Titi, Edriss S. Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations. (English) Zbl 1307.76083 J. Math. Fluid Mech. 16, No. 1, 59-76 (2014). MSC: 76W05 76B03 76D03 35B44 76A10 76A05 PDF BibTeX XML Cite \textit{A. Larios} and \textit{E. S. Titi}, J. Math. Fluid Mech. 16, No. 1, 59--76 (2014; Zbl 1307.76083) Full Text: DOI arXiv OpenURL
Cheskidov, A.; Shvydkoy, R. A unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range. (English) Zbl 1433.76031 J. Math. Fluid Mech. 16, No. 2, 263-273 (2014). MSC: 76D03 76B03 35Q30 35Q31 76F02 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{R. Shvydkoy}, J. Math. Fluid Mech. 16, No. 2, 263--273 (2014; Zbl 1433.76031) Full Text: DOI arXiv Link OpenURL
Suzuki, Takashi Irrotational blowup of the solution to compressible Euler equation. (English) Zbl 1273.35218 J. Math. Fluid Mech. 15, No. 3, 617-633 (2013). MSC: 35Q31 35L67 PDF BibTeX XML Cite \textit{T. Suzuki}, J. Math. Fluid Mech. 15, No. 3, 617--633 (2013; Zbl 1273.35218) Full Text: DOI OpenURL
Wang, Yun; Xin, Zhouping Existence of weak solutions for a two-dimensional fluid-rigid body system. (English) Zbl 1273.35228 J. Math. Fluid Mech. 15, No. 3, 553-566 (2013). MSC: 35Q35 35B65 76N10 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Z. Xin}, J. Math. Fluid Mech. 15, No. 3, 553--566 (2013; Zbl 1273.35228) Full Text: DOI OpenURL
Neustupa, Jiří; Penel, Patrick Approximation of a solution to the Euler equation by solutions of the Navier-Stokes equation. (English) Zbl 1278.35181 J. Math. Fluid Mech. 15, No. 1, 179-196 (2013). MSC: 35Q30 35Q31 76D05 76D09 PDF BibTeX XML Cite \textit{J. Neustupa} and \textit{P. Penel}, J. Math. Fluid Mech. 15, No. 1, 179--196 (2013; Zbl 1278.35181) Full Text: DOI OpenURL
Geyer, Anna On some background flows for tsunami waves. (English) Zbl 1294.76067 J. Math. Fluid Mech. 14, No. 1, 141-158 (2012). MSC: 76B15 35Q31 86A05 PDF BibTeX XML Cite \textit{A. Geyer}, J. Math. Fluid Mech. 14, No. 1, 141--158 (2012; Zbl 1294.76067) Full Text: DOI Link OpenURL
Beirão Da Veiga, H.; Crispo, F. The 3D inviscid limit result under slip boundary conditions. A negative answer. (English) Zbl 1294.35057 J. Math. Fluid Mech. 14, No. 1, 55-59 (2012). MSC: 35Q30 35Q31 76D03 76B03 PDF BibTeX XML Cite \textit{H. Beirão Da Veiga} and \textit{F. Crispo}, J. Math. Fluid Mech. 14, No. 1, 55--59 (2012; Zbl 1294.35057) Full Text: DOI arXiv OpenURL
Buffoni, B. Generalized flows satisfying spatial boundary conditions. (English) Zbl 1255.35180 J. Math. Fluid Mech. 14, No. 3, 501-528 (2012). MSC: 35Q31 35A15 76D07 PDF BibTeX XML Cite \textit{B. Buffoni}, J. Math. Fluid Mech. 14, No. 3, 501--528 (2012; Zbl 1255.35180) Full Text: DOI Link OpenURL
Thoren, Elizabeth Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations. (English) Zbl 1254.76059 J. Math. Fluid Mech. 14, No. 3, 541-564 (2012). MSC: 76D05 35Q31 PDF BibTeX XML Cite \textit{E. Thoren}, J. Math. Fluid Mech. 14, No. 3, 541--564 (2012; Zbl 1254.76059) Full Text: DOI arXiv OpenURL
Wang, Lizhen; Xin, Zhouping; Zang, Aibin Vanishing viscous limits for 3D Navier-Stokes equations with a Navier-slip boundary condition. (English) Zbl 1256.35068 J. Math. Fluid Mech. 14, No. 4, 791-825 (2012). MSC: 35Q30 35Q35 35B65 35D35 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Math. Fluid Mech. 14, No. 4, 791--825 (2012; Zbl 1256.35068) Full Text: DOI arXiv OpenURL
Paicu, Marius; Vicol, Vlad Analyticity and gevrey-class regularity for the second-grade fluid equations. (English) Zbl 1270.35370 J. Math. Fluid Mech. 13, No. 4, 533-555 (2011). MSC: 35Q35 76A10 76B03 35Q31 PDF BibTeX XML Cite \textit{M. Paicu} and \textit{V. Vicol}, J. Math. Fluid Mech. 13, No. 4, 533--555 (2011; Zbl 1270.35370) Full Text: DOI arXiv OpenURL
Renardy, Michael On hydrostatic free surface problems. (English) Zbl 1270.76010 J. Math. Fluid Mech. 13, No. 1, 89-93 (2011). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{M. Renardy}, J. Math. Fluid Mech. 13, No. 1, 89--93 (2011; Zbl 1270.76010) Full Text: DOI OpenURL
Taniuchi, Yasushi; Tashiro, Tomoya; Yoneda, Tsuyoshi On the two-dimensional Euler equations with spatially almost periodic initial data. (English) Zbl 1270.35357 J. Math. Fluid Mech. 12, No. 4, 594-612 (2010). MSC: 35Q31 76B03 PDF BibTeX XML Cite \textit{Y. Taniuchi} et al., J. Math. Fluid Mech. 12, No. 4, 594--612 (2010; Zbl 1270.35357) Full Text: DOI OpenURL
Caprino, S.; Marchioro, C. On the Euler equation in an unbounded domain of the plane. (English) Zbl 1261.35115 J. Math. Fluid Mech. 12, No. 1, 151-169 (2010). MSC: 35Q31 76B03 PDF BibTeX XML Cite \textit{S. Caprino} and \textit{C. Marchioro}, J. Math. Fluid Mech. 12, No. 1, 151--169 (2010; Zbl 1261.35115) Full Text: DOI OpenURL
Beirão da Veiga, H.; Crispo, Francesca Sharp inviscid limit results under Navier-type boundary conditions. An \(L^p\) theory. (English) Zbl 1261.35099 J. Math. Fluid Mech. 12, No. 3, 397-411 (2010). MSC: 35Q30 35Q31 76D03 76B03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{F. Crispo}, J. Math. Fluid Mech. 12, No. 3, 397--411 (2010; Zbl 1261.35099) Full Text: DOI OpenURL
Hoffman, Johan; Johnson, Claes Resolution of d’Alembert’s paradox. (English) Zbl 1261.76005 J. Math. Fluid Mech. 12, No. 3, 321-334 (2010). MSC: 76B03 35Q31 76M10 PDF BibTeX XML Cite \textit{J. Hoffman} and \textit{C. Johnson}, J. Math. Fluid Mech. 12, No. 3, 321--334 (2010; Zbl 1261.76005) Full Text: DOI OpenURL
Bellout, Hamid; Neustupa, Jiří A Navier-Stokes approximation of the 3D Euler equation with the zero flux on the boundary. (English) Zbl 1189.35217 J. Math. Fluid Mech. 10, No. 4, 531-553 (2008). MSC: 35Q05 35Q35 76D05 76N17 PDF BibTeX XML Cite \textit{H. Bellout} and \textit{J. Neustupa}, J. Math. Fluid Mech. 10, No. 4, 531--553 (2008; Zbl 1189.35217) Full Text: DOI OpenURL
Secchi, Paolo 2D slightly compressible ideal flow in an exterior domain. (English) Zbl 1232.76049 J. Math. Fluid Mech. 8, No. 4, 564-590 (2006). MSC: 76N10 35Q31 35L50 PDF BibTeX XML Cite \textit{P. Secchi}, J. Math. Fluid Mech. 8, No. 4, 564--590 (2006; Zbl 1232.76049) Full Text: DOI OpenURL
Yudovich, V. I. Topics in an ideal fluid dynamics. (English) Zbl 1091.76007 J. Math. Fluid Mech. 7, Suppl. 3, S299-S325 (2005). Reviewer: Georg V. Jaiani (Tbilisi) MSC: 76B03 35Q35 35Q05 PDF BibTeX XML Cite \textit{V. I. Yudovich}, J. Math. Fluid Mech. 7, S299--S325 (2005; Zbl 1091.76007) Full Text: DOI OpenURL
Shvydkoy, Roman; Latushkin, Yuri Essential spectrum of the linearized 2D Euler equation and Lyapunov-Oseledets exponents. (English) Zbl 1329.76028 J. Math. Fluid Mech. 7, No. 2, 164-178 (2005). MSC: 76B03 37N10 37D45 76E99 35Q31 PDF BibTeX XML Cite \textit{R. Shvydkoy} and \textit{Y. Latushkin}, J. Math. Fluid Mech. 7, No. 2, 164--178 (2005; Zbl 1329.76028) Full Text: DOI arXiv OpenURL
Haragus, M.; Nicholls, D. P.; Sattinger, D. H. Solitary wave interactions of the Euler-Poisson equations. (English) Zbl 1044.35045 J. Math. Fluid Mech. 5, No. 1, 92-118 (2003). MSC: 35Q05 35Q53 35Q51 37K55 PDF BibTeX XML Cite \textit{M. Haragus} et al., J. Math. Fluid Mech. 5, No. 1, 92--118 (2003; Zbl 1044.35045) Full Text: DOI OpenURL
Ogawa, Takayoshi; Taniuchi, Yasushi A note on blow-up criterion to the 3-D Euler equations in a bounded domain. (English) Zbl 1044.35046 J. Math. Fluid Mech. 5, No. 1, 17-23 (2003). MSC: 35Q05 35Q35 35L60 76B03 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{Y. Taniuchi}, J. Math. Fluid Mech. 5, No. 1, 17--23 (2003; Zbl 1044.35046) Full Text: DOI OpenURL
Secchi, Paolo On the singular incompressible limit of inviscid compressible fluids. (English) Zbl 0965.35127 J. Math. Fluid Mech. 2, No. 2, 107-125 (2000). Reviewer: Terence Tao (Los Angeles) MSC: 35Q35 35Q05 35B40 76N10 PDF BibTeX XML Cite \textit{P. Secchi}, J. Math. Fluid Mech. 2, No. 2, 107--125 (2000; Zbl 0965.35127) Full Text: DOI OpenURL