×

Symmetries of the gas dynamics equations using the differential form method. (English) Zbl 1386.76140

Summary: A brief review of the theory of exterior differential systems and isovector symmetry analysis methods is presented in the context of the one-dimensional inviscid compressible flow equations. These equations are formulated as an exterior differential system with equation of state (EOS) closure provided in terms of an adiabatic bulk modulus. The scaling symmetry generators – and corresponding EOS constraints – otherwise appearing in the existing literature are recovered through the application and invariance under Lie derivative dragging operations.{
©2017 American Institute of Physics}

MSC:

76N15 Gas dynamics (general theory)
35Q31 Euler equations
34C14 Symmetries, invariants of ordinary differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Stanyukovich, K., Unsteady Motion of Continuous Media (1960)
[2] Sedov, L., Similarity and Dimensional Methods in Mechanics (1982) · Zbl 0526.76002
[3] Zel’dovich, Y.; Raizer, Y., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (2002)
[4] Barenblatt, G., Scaling, Self-Similarity, and Intermediate Asymptotics (1996) · Zbl 0907.76002
[5] Sachdev, P., Self-Similarity and Beyond (2000) · Zbl 0961.35001
[6] Sachdev, P., Shock Waves and Explosions (2004) · Zbl 1064.76003
[7] Hansen, A., Similarity Analyses of Boundary Value Problems in Engineering (1964) · Zbl 0137.22603
[8] Kinslow, R., High-Velocity Impact Phenomena (1970)
[9] Olver, P., Applications of Lie Groups to Differential Equations (1993) · Zbl 0785.58003
[10] Cantwell, B., Introduction to Symmetry Analysis (2002) · Zbl 1082.34001
[11] Birkhoff, G., Hydrodynamics (2015)
[12] Ovsyannikov, L., Group Analysis of Differential Equations (1982)
[13] Ovsyannikov, L., Lectures on the Theory of Group Properties of Differential Equations (2013) · Zbl 1282.34002
[14] Andreev, V.; Kaptsov, O.; Pukhnachov, V.; Rodionov, A., Applications of Group-Theoretical Methods in Hydrodynamics (1998) · Zbl 0912.35001
[15] Korobeinikov, V., Problems of Point-Blast Theory (1991)
[16] Guderley, G., Starke kugelige und zylindrische verdichtungsstöβe in der nähe des kugelmittelpunktes bzw. der zylinderachse, Luftfahrtforschung, 19, 302 (1942) · Zbl 0061.45804
[17] Holm, D., Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids (1976)
[18] Axford, R.; Holm, D., Spherical shock collapse in a non-ideal medium (1978) · Zbl 0418.76044
[19] Axford, R.; Holm, D., Converging finite-strength shocks, Phys. D, 2, 194 (1981) · doi:10.1016/0167-2789(81)90073-7
[20] Coggeshall, S., Lie group invariance properties of radiation hydrodynamics equations (1984)
[21] Coggeshall, S., Analytic solutions of hydrodynamics equations, Phys. Fluids A, 3, 757 (1991) · Zbl 0732.76002 · doi:10.1063/1.858008
[22] Coggeshall, S.; Meyer-ter-Vehn, J., Group-invariant solutions and optimal systems for multidimensional hydrodynamics, J. Math. Phys., 33, 3585 (1992) · Zbl 0763.76006 · doi:10.1063/1.529907
[23] Coggeshall, S., Group-invariant solutions of hydrodynamics (1994)
[24] Hutchens, G., Finite-strength shock propagation for alternative equations of state (1990)
[25] Harrison, B.; Estabrook, F., Geometric approach to invariance groups and solution of partial differential systems, J. Math. Phys., 12, 653 (1971) · Zbl 0216.45702 · doi:10.1063/1.1665631
[26] Harrison, B.; Shkil, M.; Nikitin, A.; Boyko, V., Differential form symmetry analyses of two equations cited by Fushchych, 21 (1997) · Zbl 0954.35015
[27] Harrison, B., The differential form method for finding symmetries, Sigma, 1, 12 (2005) · Zbl 1069.22011 · doi:10.3842/sigma.2005.001
[28] Edelen, D., Applied Exterior Calculus (2005) · Zbl 1099.58001
[29] Stephani, H., Differential Equations: Their Solution Using Symmetries (1989) · Zbl 0704.34001
[30] Ivey, T.; Landsberg, J., Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems (2003) · Zbl 1105.53001
[31] Mandrekas, J., Application of Lie group methods to the equations of magnetohydrodynamics (1984)
[32] Bauer, W., A new covariant form of the equations of geophysical fluid dynamics and its discretization using discrete exterior calculus (2013)
[33] Pavlov, D.; Mullen, P.; Tong, Y.; Kanso, E.; Marsden, J.; Desbrun, M., Structure-preserving discretization of incompressible fluids, Phys. D, 240, 443 (2011) · Zbl 1208.37047 · doi:10.1016/j.physd.2010.10.012
[34] Cotter, C.; Thuburn, J., A finite element exterior calculus framework for the rotating shallow-water equations, J. Comput. Phys., 257, 1506 (2014) · Zbl 1351.76054 · doi:10.1016/j.jcp.2013.10.008
[35] Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H., Numerical method for Darcy flow derived using discrete exterior calculus, Int. J. Comput. Methods Eng. Sci. Mech., 16, 3, 169 (2015) · doi:10.1080/15502287.2014.977500
[36] Desbrun, M.; Hirani, A.; Leok, M.; Marsden, J., Discrete exterior calculus (2005)
[37] Harlow, F.; Amsden, A., Fluid dynamics: A LASL monograph (1971)
[38] Mandl, F., Statistical Physics (1988)
[39] Bowley, R.; Sanchez, M., Introductory Statistical Mechanics (1999)
[40] Adkins, C., Equilibrium Thermodynamics (1983)
[41] Zemansky, M.; Abbott, M.; Van Ness, H., Basic Engineering Thermodynamics (1975)
[42] Callen, H., Thermodynamics and an Introduction to Thermostatistics (2006)
[43] Menikoff, R.; Plohr, B., The Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 75 (1989) · Zbl 1129.35439 · doi:10.1103/revmodphys.61.75
[44] Flanders, H., Differential Forms with Applications to the Physical Sciences (1989) · Zbl 0733.53002
[45] Bryant, R.; Griffiths, P.; Grossman, D., Exterior Differential Systems and Euler-Lagrange Partial Differential Equations (2003) · Zbl 1024.58006
[46] Gardner, R., The Method of Equivalence and its Applications (1989) · Zbl 0694.53027
[47] Bachman, D., A Geometric Approach to Differential Forms (2006) · Zbl 1108.58001
[48] Suhubi, E., Exterior Analysis: Using Applications of Differential Forms (2013) · Zbl 1277.53001
[49] Axford, R., Solutions of the Noh problem for various equations of state using Lie groups, Laser Part. Beams, 18, 93 (2000) · doi:10.1017/s026303460018111x
[50] Boyd, Z.; Ramsey, S.; Baty, R., Symmetries of the Euler compressible flow equations for general equation of state (2015)
[51] Bracken, P., An exterior differential system for a generalized Korteweg-de Vries equation and its associated integrability, Acta Appl. Math., 95, 223 (2007) · Zbl 1370.37125 · doi:10.1007/s10440-007-9086-1
[52] Bracken, P., Exterior differential systems and prolongations for three important nonlinear partial differential equations, Commun. Pure Appl. Anal., 10, 1345 (2011) · Zbl 1229.35033 · doi:10.3934/cpaa.2011.10.1345
[53] Wahlquist, H.; Estabrook, F., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16, 1 (1975) · Zbl 0298.35012 · doi:10.1063/1.522396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.