×

Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping. (English) Zbl 1433.76146

Summary: The dynamic modification of the computational grid due to element displacement, deformation and edge swapping is described here in terms of suitably-defined continuous (in time) alterations of the geometry of the elements of the dual mesh. This new interpretation allows one to describe all mesh modifications within the arbitrary Lagrangian Eulerian framework, thus removing the need to interpolate the solution across computational meshes with different connectivity. The resulting scheme is by construction conservative and it is applied here to the solution of the Euler equations for compressible flows in two spatial dimensions. Preliminary two dimensional numerical simulations are presented to demonstrate the soundness of the approach. Numerical experiments show that this method allows for large time steps without causing element invalidation or tangling and at the same time guarantees high quality of the mesh elements without resorting to global re-meshing techniques, resulting in a very efficient solver for the analysis of e.g. fluid-structure interaction problems, even for those cases that require large mesh deformations or changes in the domain topology.

MSC:

76N15 Gas dynamics (general theory)
76M12 Finite volume methods applied to problems in fluid mechanics
35Q31 Euler equations

Software:

ReALE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acikgoz, N.; Bottasso, C. L., A unified approach to the deformation of simplicial and non-simplicial meshes in two and three dimensions with guaranteed validity, Comput. Struct., 85, 11-14, 944-954 (2007)
[2] Baker, T. J., Mesh deformation and modification for time dependent problems, Int. J. Numer. Methods Fluids, 43, 6-7, 747-768 (2003) · Zbl 1032.76665
[3] Batina, J. T., Unsteady Euler airfoil solution using unstructured dynamic meshes, AIAA J., 28, 1381-1388 (1990)
[4] Bendiksen, O. O., Review of unsteady transonic aerodynamics: theory and applications, Prog. Aerospace Sci., 47, 2, 135-167 (2011)
[5] R.M. Bennet, J.W. Edwards, An overview of recent developments in computational aeroelasticity, in: 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, 1998.; R.M. Bennet, J.W. Edwards, An overview of recent developments in computational aeroelasticity, in: 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, 1998.
[6] Cavagna, L.; Quaranta, G.; Mantegazza, P., Application of Navier-Stokes simulations for aeroelastic assessment in transonic regime, Comput. Struct., 85, 11-14, 818-832 (2007)
[7] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct., 80, 305-316 (2002)
[8] del Pino, C.; Parras, L.; Felli, M.; Fernandez-Feria, R., Structure of trailing vortices: comparison between particle image velocimetry measurements and theoretical models, Phys. Fluids, 23, 1, 013602 (2011)
[9] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodriguez-Ferran, A., Arbitrary Lagrangian-Eulerian methods, (Stein, R.; de Borst, E.; Hughes, T. J.R., The Encyclopedia of Computational Mechanics, vol. 1 (2004), Wiley), 413-437, chap. 14
[10] Étienne, S.; Garon, A.; Pelletier, D., Perspective on the geometric conservation law and finite element methods for ALE simulations of compressible flow, J. Comput. Phys., 228, 2313-2333 (2009) · Zbl 1275.76159
[11] Farhat, C.; Geuzaine, P.; Crandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 669-694 (2001) · Zbl 1157.76372
[12] Formaggia, L.; Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 2, 105-131 (1999) · Zbl 0942.65113
[13] Freitag, L. A.; Ollivier-Gooch, C., Tetrahedral mesh improvement using swapping and smoothing, Int. J. Numer. Methods Eng., 40, 21, 3979-4002 (1997) · Zbl 0897.65075
[14] Frey, P. J.; George, P. L., Mesh Generation: Application to Finite Elements (2000), Hermes Science: Hermes Science Paris
[15] Geuzaine, P.; Grandmont, C.; Farhat, C., Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations, J. Comput. Phys., 191, 1, 206-227 (2003) · Zbl 1051.76038
[16] Godlewski, E.; Raviart, P. A., Numerical approximation of hyperbolic systems of conservation laws (1994), Springer-Verlag: Springer-Verlag New York · Zbl 1155.76374
[17] A. Guardone, L. Quartapelle, Spatially factorized Galerkin and Taylor-Galerkin schemes for multidimensional conservation laws, Scientific Report DIA-SR 00-18, Politecnico di Milano, Italy (2000).; A. Guardone, L. Quartapelle, Spatially factorized Galerkin and Taylor-Galerkin schemes for multidimensional conservation laws, Scientific Report DIA-SR 00-18, Politecnico di Milano, Italy (2000).
[18] Hassan, O.; Morgan, K.; Weatherill, N. P., Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components, Phil. Trans. R. Soc. Lond. A, 365, 1859, 2531-2552 (2007)
[19] Hassan, O.; Sørensen, K. A.; Morgan, K.; Weatherill, N. P., A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing, Int. J. Numer. Methods Fluids, 53, 8, 1243-1266 (2007) · Zbl 1108.76044
[20] D. Isola, A. Guardone, G. Quaranta, Arbitrary Lagrangian Eulerian formulation for grids with variable topology, in: E.O. n. M.P.B. Schrefler (ed.), 3rd International Conference on Computational Methods for Coupled Problems in Science and Engineering ECCOMAS COUPLED PROBLEMS 2009, CIMNE, Barcelona, 2009.; D. Isola, A. Guardone, G. Quaranta, Arbitrary Lagrangian Eulerian formulation for grids with variable topology, in: E.O. n. M.P.B. Schrefler (ed.), 3rd International Conference on Computational Methods for Coupled Problems in Science and Engineering ECCOMAS COUPLED PROBLEMS 2009, CIMNE, Barcelona, 2009. · Zbl 1433.76146
[21] D. Isola, A. Guardone, G. Quaranta, An ALE scheme without interpolation for moving domain with adaptive grids, in: 40th Fluid Dynamics Conference and Exhibit, 2010.; D. Isola, A. Guardone, G. Quaranta, An ALE scheme without interpolation for moving domain with adaptive grids, in: 40th Fluid Dynamics Conference and Exhibit, 2010.
[22] Lambert, J. D., Numerical Methods for Ordinary Differential Systems: the Initial Value Problem (1991), John Wiley & Sons: John Wiley & Sons Chichester, UK · Zbl 0745.65049
[23] LeVeque, R. J., Finite Volume Methods for Conservation Laws and Hyperbolic Systems (2002), Cambridge University Press
[24] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: a reconnection-based arbitrary-Lagrangian Eulerian method, J. Comput. Phys., 229, 12, 724-4761 (2010) · Zbl 1305.76067
[25] Margolin, L.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, J. Comput. Phys., 184, 1, 266-298 (2003) · Zbl 1016.65004
[26] Mavriplis, D. J.; Yang, Z., Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes, J. Comput. Phys., 213, 2, 557-573 (2006) · Zbl 1136.76402
[27] D. Muffo, G. Quaranta, A. Guardone, Compressilbe fluid-flow ALE formulation on changing topology meshes for aeroelastic simulations, in: Proceedings of the 26th ICAS Congress, Anchorage, Alaska, 2008.; D. Muffo, G. Quaranta, A. Guardone, Compressilbe fluid-flow ALE formulation on changing topology meshes for aeroelastic simulations, in: Proceedings of the 26th ICAS Congress, Anchorage, Alaska, 2008.
[28] G. Quaranta, D. Isola, A. Guardone, Numerical simulation of the opening of aerodynamic contro surfaces with two-dimensional unstructured adaptive meshes, in: J.C.F. Pereira, A. Sequeira (eds.), V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, 2010, pp. 1-18.; G. Quaranta, D. Isola, A. Guardone, Numerical simulation of the opening of aerodynamic contro surfaces with two-dimensional unstructured adaptive meshes, in: J.C.F. Pereira, A. Sequeira (eds.), V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, 2010, pp. 1-18.
[29] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[30] Schuster, D. M.; Liu, D. D.; Huttsell, L. J., Computational aeroelasticity: success, progress, challenge, J. Aircr., 40, 5, 843-856 (2003)
[31] Selmin, V., The node-centred finite volume approach: bridge between finite differences and finite elements, Comput. Methods Appl. Mech. Eng., 102, 107-138 (1993) · Zbl 0767.76058
[32] J.R. Shewchuk, What is a good linear element? Interpolation, conditioning, and quality measures, in: 11th International Meshing Roundtable, Ithaca, NY, 2002, pp. 115-126.; J.R. Shewchuk, What is a good linear element? Interpolation, conditioning, and quality measures, in: 11th International Meshing Roundtable, Ithaca, NY, 2002, pp. 115-126.
[33] Shyy, W.; Udaykumar, H. S.; Rao, M. M.; Smith, R. W., Computational fluid dynamics with moving boundaries, Comput Methods Appl. Mech. Eng., 193, 2019-2032 (2004)
[34] Sitaraman, J.; Floros, M.; Wissink, A.; Potsdam, M., Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids, J. Comput. Phys., 229, 12, 4703-4723 (2010) · Zbl 1305.76058
[35] J.L. Steger, F. Dougherty, J. Benek, A Chimera grid scheme, in: Advances in Grid Generation, ASME FED-5, 1983, pp. 59-69.; J.L. Steger, F. Dougherty, J. Benek, A Chimera grid scheme, in: Advances in Grid Generation, ASME FED-5, 1983, pp. 59-69.
[36] Thompson, J. F., Numerical Grid Generation: Foundations and Applications (1985), Elsevier Science Publishing · Zbl 0598.65086
[37] Truesdell, C., A First Course in Rational Continuum Mechanics: General Concepts (1991), Academic Press
[38] van Leer, B., Towards the ultimate conservative difference scheme II. Monotoniticy and conservation combined in a second order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055
[39] Venkatakrishnan, V.; Mavriplis, D. J., Implicit method for the computation of unsteady flows on unstructured grids, J. Comput. Phys., 127, 2, 380-397 (1996) · Zbl 0862.76054
[40] Wang, R.; Keast, P.; Muir, P., A comparison of adaptive software for 1D parabolic PDEs, J. Comput. Appl. Math., 169, 1, 127-150 (2004) · Zbl 1052.65085
[41] N.P. Weatherill, O. Hassan, M. Marchant, D. Marcum, Adaptive inviscid solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes, in: 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, 1993.; N.P. Weatherill, O. Hassan, M. Marchant, D. Marcum, Adaptive inviscid solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes, in: 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, 1993.
[42] Yurkovich, R., Status of unsteady aerodynamic prediction for flutter of high-performance aircraft, J. Aircr., 40, 5, 832-842 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.