×

Numerical solution of plasma fluid equations using locally refined grids. (English) Zbl 0954.76062

Summary: This paper describes a numerical method for the solution of plasma fluid equations on block-structured locally refined grids. The plasmas under consideration are typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons, together with an energy equation, coupled via Poisson’s equation to a system of Euler equations for each ion species augmented with electric field, collisional, and source/sink terms. A discretization, previously developed for a uniform spatial grid, is generalized to enable local grid refinement. This extension involves the time integration of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. This approach represents an advancement of methodologies developed for neutral flows using block-structured adaptive mesh refinement to include the significant additional effect of the electrostatic forces that couple the ion and electron fluid components. Numerical results assess the accuracy of the method and illustrate the importance of using adequate resolution.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D37 Statistical mechanics of semiconductors

Software:

CVODE
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142, 1 (1998) · Zbl 0933.76055
[2] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64 (1989) · Zbl 0665.76070
[3] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484 (1984) · Zbl 0536.65071
[4] Bukowski, J. D.; Graves, D. B.; Vitello, P., Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles, J. Appl. Phys., 80 (September 1996)
[5] J. D. Bukowski, R. A. Stewart, D. B. Graves, and, P. Vitello, Modeling inductively coupled plasma tools with chlorine chemistry, in, Proceedings, Electrochemical Society Meeting, May 1994.; J. D. Bukowski, R. A. Stewart, D. B. Graves, and, P. Vitello, Modeling inductively coupled plasma tools with chlorine chemistry, in, Proceedings, Electrochemical Society Meeting, May 1994.
[6] Cohen, S. D.; Hindmarsh, A. C., CVODE User Guide (September 1994)
[7] Cohen, S. D.; Hindmarsh, A. C., CVODE, a stiff/nonstiff ODE solver in C, Comput. Phys., 10, 138 (1996)
[8] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87, 171 (1990) · Zbl 0694.65041
[9] Colella, P.; Dorr, M. R.; Wake, D. D., A conservative finite difference method for the numerical solution of plasma fluid equations, J. Comput. Phys., 149, 168 (1999) · Zbl 0930.76053
[10] Crutchfield, W. Y.; Welcome, M. L., Object Oriented Implementation of Adaptive Mesh Refinement Algorithms (April 1993)
[11] Hedstrom, G. W.; Rodrigue, G. H.; Berger, M.; Oliger, J., Adaptive mesh refinement for 1-dimensional gas dynamics, IMACS, 43 (1983)
[12] Hoekstra, R. J.; Kushner, M. J., The effect of subwafer dielectrics on plasma properties in plasma etching reactors, J. Appl. Phys., 77, 3668 (1995)
[13] Hoekstra, R. J.; Kushner, M. J., Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors, J. Appl. Phys., 79, 2275 (1996)
[14] L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and, W. A. Fiveland, A conservative adaptive-mesh algorithm for unsteady, combined-mode heat transfer using the discrete ordinates method, Numer. Heat Transfer, Part B, in press.; L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and, W. A. Fiveland, A conservative adaptive-mesh algorithm for unsteady, combined-mode heat transfer using the discrete ordinates method, Numer. Heat Transfer, Part B, in press. · Zbl 0905.65131
[15] Ingold, J. H., Two-fluid theory of the positive column of a gas discharge, Phys. Fluids, 15, 75 (January 1972)
[16] Koniges, A. E.; Craddock, G. G.; Schnack, D. D.; Strauss, H. R., Proceedings, the Workshop on Adaptive Grid Methods for Fusion Plasmas (July 1995)
[17] Kushner, M. J.; Collison, W. Z.; Grapperhaus, M. J.; Holland, J. P.; Barnes, M. S., A three-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison to experiments, J. Appl. Phys., 80, 1337 (1996)
[18] Lieberman, M. A.; Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing (1994) · Zbl 0820.58044
[19] Manos, D. M.; Flamm, D. L., Plasma Etching: An Introduction (1989)
[20] Martin, D. F., An Adaptive Cell-Centered Projection Method for the Incompressible Euler Equations (December 1998)
[21] McCormick, S. F., MultiLevel Adaptive Methods for Partial Differential Equations, 6 (1989) · Zbl 0707.65080
[22] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and, J. P. Jesse, An adaptive projection method for the modeling of unsteady, low-mach number combustion, in, Proceedings, Fall Meeting of the Western States Section of the Combustion Institute, 1997.; R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and, J. P. Jesse, An adaptive projection method for the modeling of unsteady, low-mach number combustion, in, Proceedings, Fall Meeting of the Western States Section of the Combustion Institute, 1997.
[23] Peres, I.; Kushner, M. J., Spatial distributions of power and ion densities in rf excited remote plasma reactors, Plasma Sources Sci. Technol., 5, 499 (1996)
[24] Sommerer, T. J.; Kushner, M. J., Monte Carlo-fluid model of chlorine atom production in \(Cl_2\), HCl, and \(CCl_4\) radio-frequency discharges for plasma etching, J. Vacuum Sci. Technol. B, 10, 2179 (1992)
[25] Steiner, O.; Knolker, M.; Schussler, M., Solar Surface Magnetism, 441 (1994)
[26] Stewart, R. A.; Vitello, P.; Graves, D. B., Two-dimensional fluid model of high density inductively coupled plasma sources, J. Vacuum Sci. Technol. B, 12 (January 1994)
[27] Stewart, R. A.; Vitello, P.; Graves, D. B.; Jaeger, E. F.; Berry, L. A., Plasma uniformity in high-density inductively coupled plasma tools, Plasma Sources Sci. Technol., 4 (1995)
[28] Tan, W.; Hoekstra, R. J.; Kushner, M. J., A time dependent propagator method for long mean free path transport of neutral particles in plasma processing reactors, J. Appl. Phys., 79, 3423 (1996)
[29] Ventzek, P. L.G; Grapperhaus, M.; Kushner, M. J., Investigation of electron source and ion flux uniformity in high plasma density inductively coupled etching tools using two-dimensional modeling, J. Vacuum Sci. Technol. B, 12, 3118 (1994)
[30] Ventzek, P. L.G; Hoekstra, R. J.; Kushner, M. J., Two-dimensional modeling of high density inductively coupled sources for materials processing, J. Vacuum Sci. Technol. B, 12, 461 (1994)
[31] Wainman, P.; Stewart, R. A.; Lieberman, M. A.; Graves, D. B.; Vitello, P., Comparison of langmuir probe characterization and model predictions in a high density ICP source, Bull. Am. Phys. Soc., 39 (1994)
[32] Wake, D. D., Simulation of Plasma Based Semiconductor Manufacturing Using Block Structured Locally Refined Grids (1998)
[33] Wu, H.; Yu, B. W.; Li, M. L.; Yang, Y., Two-dimensional fluid model simulation of bell jar top inductively coupled plasma, IEEE Trans. Plasma Sci., 25, 1 (February 1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.