×

Small-scale CMB anisotropies induced by the primordial magnetic fields. (English) Zbl 1485.83164

Summary: The primordial magnetic fields (PMFs) produced in the early universe are expected to be the origin of the large-scale cosmic magnetic fields. The PMFs are considered to leave a footprint on the cosmic microwave background (CMB) anisotropies due to both the electromagnetic force and gravitational interaction. In this paper, we investigate how the PMFs affect the CMB anisotropies on smaller scales than the mean-free-path of the CMB photons. We solve the baryon Euler equation with Lorentz force due to the PMFs, and we show that the vector-type perturbations from the PMFs induce the CMB anisotropies below the Silk scale as \(\ell > 3000\). Based on our calculations, we put a constraint on the PMFs from the combined CMB temperature anisotropies obtained by Planck and South Pole Telescope (SPT). We have found that the highly-resolved temperature anisotropies of the SPT 2017 bandpowers at \(\ell \lesssim 8000\) favor the PMF model with a small scale-dependence. As a result, the Planck and SPT’s joint-analysis puts a constraint on the PMF strength normalized on the co-moving 1 Mpc scale as \(B_{1\mathrm{Mpc}} < 1.5\) nG with Planck and SPT at 95% C.L., while \(B_{1\mathrm{Mpc}} < 3.2\) nG only with the Planck data at 95% C.L. We also discuss the effects on the cosmological parameter estimate when including the SPT data and CMB anisotropies induced by the PMFs.

MSC:

83F05 Relativistic cosmology
83C50 Electromagnetic fields in general relativity and gravitational theory
35B20 Perturbations in context of PDEs
78A30 Electro- and magnetostatics
81V80 Quantum optics
74E10 Anisotropy in solid mechanics
35Q31 Euler equations

Software:

CosmoMC; CAMB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beck, RainerWielebinski, RichardMagnetic Fields in the Milky Way and in Galaxies2013
[2] Brandenburg, Axel; Subramanian, Kandaswamy, Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rept., 417, 1-209 (2005) · doi:10.1016/j.physrep.2005.06.005
[3] Ando, Shin’ichiro; Kusenko, Alexander, Evidence for Gamma-Ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields, Astrophys. J. Lett., 722, L39 (2010) · doi:10.1088/2041-8205/722/1/L39
[4] Vovk, Ievgen; Taylor, Andrew M.; Semikoz, Dmitri; Neronov, Andrii, Fermi/LAT observations of 1ES 0229+200: implications for extragalactic magnetic fields and background light, Astrophys. J. Lett., 747, L14 (2012) · doi:10.1088/2041-8205/747/1/L14
[5] Alves Batista, Rafael; Shin, Min-Su; Devriendt, Julien; Semikoz, Dmitri; Sigl, Guenter, Implications of strong intergalactic magnetic fields for ultrahigh-energy cosmic-ray astronomy, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.023010
[6] Turner, Michael S.; Widrow, Lawrence M., Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D, 37, 2743 (1988) · doi:10.1103/PhysRevD.37.2743
[7] Ratra, Bharat, Cosmological “seed” magnetic field from inflation, Astrophys. J. Lett., 391, L1-L4 (1992) · doi:10.1086/186384
[8] Turner, Michael S.; Weinberg, Erick J.; Widrow, Lawrence M., Bubble nucleation in first order inflation and other cosmological phase transitions, Phys. Rev. D, 46, 2384-2403 (1992) · doi:10.1103/PhysRevD.46.2384
[9] Hogan, Craig J., Magnetohydrodynamic Effects of a First-Order Cosmological Phase Transition, Phys. Rev. Lett., 51, 1488-1491 (1983) · doi:10.1103/PhysRevLett.51.1488
[10] Quashnock, Jean M.; Loeb, Abraham; Spergel, David N., Magnetic Field Generation During the Cosmological QCD Phase Transition, Astrophys. J. Lett., 344, L49-L51 (1989) · doi:10.1086/185528
[11] Vachaspati, T., Magnetic fields from cosmological phase transitions, Phys. Lett. B, 265, 258-261 (1991) · doi:10.1016/0370-2693(91)90051-Q
[12] Avelino, P. P.; Shellard, E. P. S., Dynamical friction on cosmic string motion and magnetic field generation, Phys. Rev. D, 51, 5946-5949 (1995) · doi:10.1103/PhysRevD.51.5946
[13] H. Sicotte, Large-scale magnetic fields in texture-seeded cosmological models, Mon. Not. Roy. Astron. Soc.287 (1997) 1. · doi:10.1093/mnras/287.1.1
[14] E.R. Harrison, Generation of magnetic fields in the radiation ERA, Mon. Not. Roy. Astron. Soc.147 (1970) 279. · doi:10.1093/mnras/147.3.279
[15] Cheng, Bao-lian; Olinto, Angela V.; Schramm, David N.; Truran, James W., Constraints on the strength of primordial magnetic fields from big bang nucleosynthesis revisited, Phys. Rev. D, 54, 4714-4718 (1996) · doi:10.1103/PhysRevD.54.4714
[16] Luo, Yudong; Kajino, Toshitaka; Kusakabe, Motohiko; Mathews, Grant J., Big Bang Nucleosynthesis with an Inhomogeneous Primordial Magnetic Field Strength, Astrophys. J., 872, 172 (2019) · doi:10.3847/1538-4357/ab0088
[17] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIX. Constraints on primordial magnetic fields, Astron. Astrophys., 594, A19 (2016) · doi:10.1051/0004-6361/201525821
[18] Zucca, Alex; Li, Yun; Pogosian, Levon, Constraints on Primordial Magnetic Fields from Planck combined with the South Pole Telescope CMB B-mode polarization measurements, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.063506
[19] Paoletti, Daniela; Finelli, Fabio, Constraints on primordial magnetic fields from magnetically-induced perturbations: current status and future perspectives with LiteBIRD and future ground based experiments, JCAP, 11 (2019) · doi:10.1088/1475-7516/2019/11/028
[20] Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro, Magnetic reheating, Mon. Not. Roy. Astron. Soc., 474, L52-L55 (2018) · doi:10.1093/mnrasl/slx195
[21] Marinacci, Federico; Vogelsberger, Mark, Effects of simulated cosmological magnetic fields on the galaxy population, Mon. Not. Roy. Astron. Soc., 456, L69-L73 (2016) · doi:10.1093/mnrasl/slv176
[22] Shaw, J. Richard; Lewis, Antony, Constraining Primordial Magnetism, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.043510
[23] Kahniashvili, Tina; Maravin, Yurii; Natarajan, Aravind; Battaglia, Nicholas; Tevzadze, Alexander G., Constraining primordial magnetic fields through large scale structure, Astrophys. J., 770, 47 (2013) · doi:10.1088/0004-637X/770/1/47
[24] H. Tashiro, K. Takahashi and K. Ichiki, Primordial magnetic fields with X-ray and Sunyaev-Zel’divich cluster surveys, Mon. Not. Roy. Astron. Soc.424 (2012) 927. · doi:10.1111/j.1365-2966.2012.21239.x
[25] Minoda, Teppei; Tashiro, Hiroyuki; Takahashi, Tomo, Insight into primordial magnetic fields from 21-cm line observation with EDGES experiment, Mon. Not. Roy. Astron. Soc., 488, 2001-2005 (2019) · doi:10.1093/mnras/stz1860
[26] Subramanian, Kandaswamy; Seshadri, T. R.; Barrow, John D., Small-scale CMB polarization anisotropies due to tangled primordial magnetic fields, Mon. Not. Roy. Astron. Soc., 344, L31 (2003) · doi:10.1046/j.1365-8711.2003.07003.x
[27] Tashiro, Hiroyuki; Sugiyama, Naoshi; Banerjee, Robi, Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.023002
[28] Subramanian, Kandaswamy; Barrow, John D., Microwave background signals from tangled magnetic fields, Phys. Rev. Lett., 81, 3575-3578 (1998) · doi:10.1103/PhysRevLett.81.3575
[29] Jedamzik, Karsten; Katalinic, Visnja; Olinto, Angela V., Damping of cosmic magnetic fields, Phys. Rev. D, 57, 3264-3284 (1998) · doi:10.1103/PhysRevD.57.3264
[30] Subramanian, Kandaswamy; Barrow, John D., Magnetohydrodynamics in the early universe and the damping of noninear Alfven waves, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.083502
[31] Subramanian, Kandaswamy; Barrow, John D., Small-scale microwave background anisotropies due to tangled primordial magnetic fields, Mon. Not. Roy. Astron. Soc., 335, L57 (2002) · doi:10.1046/j.1365-8711.2002.05854.x
[32] SPT Collaboration; Henning, J. W., Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data, Astrophys. J., 852, 97 (2018) · doi:10.3847/1538-4357/aa9ff4
[33] Mack, Andrew; Kahniashvili, Tina; Kosowsky, Arthur, Microwave background signatures of a primordial stochastic magnetic field, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.123004
[34] Shaw, J. Richard; Lewis, Antony, Massive Neutrinos and Magnetic Fields in the Early Universe, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.043517
[35] Lewis, Antony, CMB anisotropies from primordial inhomogeneous magnetic fields, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.043011
[36] Paoletti, Daniela; Finelli, Fabio; Paci, Francesco, The full contribution of a stochastic background of magnetic fields to CMB anisotropies, Mon. Not. Roy. Astron. Soc., 396, 523-534 (2009) · doi:10.1111/j.1365-2966.2009.14727.x
[37] Durrer, Ruth, Gauge invariant cosmological perturbation theory: A General study and its application to the texture scenario of structure formation, Fund. Cosmic Phys., 15, 209-339 (1994)
[38] Bardeen, James M., Gauge Invariant Cosmological Perturbations, Phys. Rev. D, 22, 1882-1905 (1980) · doi:10.1103/PhysRevD.22.1882
[39] Durrer, R.; Kahniashvili, T.; Yates, A., Microwave background anisotropies from Alfven waves, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.123004
[40] Hu, Wayne; White, Martin J., CMB anisotropies: Total angular momentum method, Phys. Rev. D, 56, 596-615 (1997) · doi:10.1103/PhysRevD.56.596
[41] Banerjee, Robi; Jedamzik, Karsten, The Evolution of cosmic magnetic fields: From the very early universe, to recombination, to the present, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.123003
[42] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[43] Lewis, Antony; Bridle, Sarah, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.103511
[44] Planck Collaboration; Aghanim, N., Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys., 594, A11 (2016) · doi:10.1051/0004-6361/201526926
[45] SPT Collaboration; Keisler, R., Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data, Astrophys. J., 807, 151 (2015) · doi:10.1088/0004-637X/807/2/151
[46] Kahniashvili, Tina; Brandenburg, Axel; Durrer, Ruth; Tevzadze, Alexander G.; Yin, Winston, Scale-invariant helical magnetic field evolution and the duration of inflation, JCAP, 12 (2017) · doi:10.1088/1475-7516/2017/12/002
[47] Sharma, Ramkishor; Subramanian, Kandaswamy; Seshadri, T. R., Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.083503
[48] Fujita, Tomohiro; Durrer, Ruth, Scale-invariant Helical Magnetic Fields from Inflation, JCAP, 09 (2019) · Zbl 07483157 · doi:10.1088/1475-7516/2019/09/008
[49] Patel, Teerthal; Tashiro, Hiroyuki; Urakawa, Yuko, Resonant magnetogenesis from axions, JCAP, 01 (2020) · Zbl 1489.83084 · doi:10.1088/1475-7516/2020/01/043
[50] Sethi, Shiv K.; Subramanian, Kandaswamy, Primordial magnetic fields in the post-recombination era and early reionization, Mon. Not. Roy. Astron. Soc., 356, 778-788 (2005) · doi:10.1111/j.1365-2966.2004.08520.x
[51] Chluba, Jens; Paoletti, D.; Finelli, F.; Rubiño-Martín, Jose-Alberto, Effect of primordial magnetic fields on the ionization history, Mon. Not. Roy. Astron. Soc., 451, 2244-2250 (2015) · doi:10.1093/mnras/stv1096
[52] Jedamzik, Karsten; Katalinic, Visnja; Olinto, Anglea V., A Limit on primordial small scale magnetic fields from CMB distortions, Phys. Rev. Lett., 85, 700-703 (2000) · doi:10.1103/PhysRevLett.85.700
[53] Kunze, Kerstin E.; Komatsu, Eiichiro, Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions, JCAP, 01 (2014) · doi:10.1088/1475-7516/2014/01/009
[54] Kunze, Kerstin E.; Komatsu, Eiichiro, Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background, JCAP, 06 (2015) · doi:10.1088/1475-7516/2015/06/027
[55] Shiraishi, Maresuke; Nitta, Daisuke; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Takahashi, Keitaro, Cosmic microwave background bispectrum of vector modes induced from primordial magnetic fields, Phys. Rev. D, 82 (2010) · Zbl 1220.83051 · doi:10.1103/PhysRevD.83.029901
[56] Shiraishi, Maresuke; Nitta, Daisuke; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Takahashi, Keitaro, Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields, Phys. Rev. D, 83 (2011) · Zbl 1220.83051 · doi:10.1103/PhysRevD.83.123003
[57] Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi, Thermal Sunyaev-Zel’dovich effect in the intergalactic medium with primordial magnetic fields, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.123525
[58] CMB-S4 Collaboration; Abazajian, Kevork N., CMB-S4 Science Book, First Edition (2016)
[59] Abazajian, Kevork, CMB-S4 Science Case, Reference Design, and Project Plan (2019)
[60] Jedamzik, Karsten; Abel, Tom, Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/050
[61] Jedamzik, Karsten; Saveliev, Andrey, Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.021301
[62] R.A. Sunyaev and Y.B. Zeldovich, Small-Scale Fluctuations of Relic Radiation, Astrophys. Space Sci.7 (1970) 3. · doi:10.1007/BF00653471
[63] A. Blanchard and J. Schneider, Gravitational lensing effect on the fluctuations of the cosmic background radiation, Astron. Astrophys. 184 (1987) 1.
[64] Ostriker, J. P.; Vishniac, E. T., Generation of microwave background fluctuations from nonlinear perturbations at the ERA of galaxy formation, Astrophys. J. Lett., 306, L51 (1986) · doi:10.1086/184704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.