×

Immersed boundary method for numerical simulation of inviscid compressible flows. (English. Russian original) Zbl 1448.76129

Comput. Math. Math. Phys. 58, No. 9, 1411-1419 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 9 (2018).
Summary: A technique for the numerical simulation of the interaction between an inviscid compressible medium and solid bodies is described. The boundary condition on the solid surface is set using the immersed boundary approach. An immersed boundary technique is proposed for the considered class of problems. The performance of the technique is demonstrated by solving test problems in acoustic scattering.

MSC:

76N15 Gas dynamics (general theory)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35Q31 Euler equations
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics

Software:

NOISETTE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. S. Peskin, “Flow patterns around heart valves: A numerical method,” J. Comput. Phys. 10 (2), 252-271 (1972). · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[2] R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech. 37, 239-261 (2005). · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[3] Ph. Angot, C.-H. Bruneau, and P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows,” Numer. Math. 81, 497-520 (1999). · Zbl 0921.76168 · doi:10.1007/s002110050401
[4] E. Brown-Dymkoski, N. Kasimov, and O. V. Vasilyev, “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows,” J. Comput. Phys. 262, 344-357 (2014). · Zbl 1349.76589 · doi:10.1016/j.jcp.2013.12.060
[5] Y. Jiang, X. Wang, X. Jing, and X. Sun, “A study of three-dimensional acoustic scattering by arbitrary distribution multibodies using extended immersed boundary method,” ASME. J. Vib. Acoust. 136 (3), 034505-034505-7 (2014). · doi:10.1115/1.4026672
[6] R. Fedkiw, “Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method,” J. Comput. Phys. 175, 200-224 (2002). · Zbl 1039.76050 · doi:10.1006/jcph.2001.6935
[7] D. K. Clarke, H. A. Hassan, and M. D. Salas, “Euler calculations for multielement airfoils using cartesian grids,” AIAA J. 24 (3), 353-358 (1986). · Zbl 0587.76095 · doi:10.2514/3.9273
[8] E. Arquis and J. P. Caltagirone, “Sur les conditions hydrodynamique au voisinage d’une interface millieux uide-millieu poreux: application a la convection naturelle,” C. R. Acad. Sci. Paris II 299, 1-4 (1984).
[9] E. Feireisl, J. Neustupa, and J. Stebel, “Convergence of a Brinkman-type penalization for compressible fluid flows,” J. Differ. Equations 250 (1), 596-606 (2011). · Zbl 1206.35194 · doi:10.1016/j.jde.2010.09.031
[10] Q. Liu and O. V. Vasilyev, “Brinkman penalization method for compressible flows in complex geometries,” J. Comput. Phys. 227, 946-966 (2007). · Zbl 1388.76259 · doi:10.1016/j.jcp.2007.07.037
[11] M. Bergmann and A. Iollo, “Modeling and simulation of fish-like swimming,” J. Comput. Phys. 230 (2), 329-348 (2011). · Zbl 1416.76357 · doi:10.1016/j.jcp.2010.09.017
[12] O. Boiron, G. Chiavassa, and R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles,” Comput. Fluids 38 (3), 703-714 (2009). · Zbl 1193.76097 · doi:10.1016/j.compfluid.2008.07.003
[13] Y. Bae and Y. J. Moon, “Brinkman penalization method for computation of acoustic scattering from complex geometry,” 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference) (2010), pp. 2010-3939.
[14] N. Kasimov, E. Brown-Dymkoski, and O. V. Vasilyev, “Characteristic-based volume penalization method for arbitrary mach flows around moving and deforming complex geometry obstacles,” Bull. Am. Phys. Soc. 60 (21), 574-575 (2015).
[15] D. A. Nield and A. Bejan, Convection in Porous Media, 5th ed. (Springer International, New York, 2017). · Zbl 1375.76004 · doi:10.1007/978-3-319-49562-0
[16] P. Bakhvalov, I. Abalakin, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81 (6), 331-356 (2016). · doi:10.1002/fld.4187
[17] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel software package NOISEtte for large-scale computation of aerodynamic and aeroacoustic applications,” Vychisl. Metody Program. 13 (3), 110-125 (2012).
[18] Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA Conference Publication, Ed. by C. K. W. Tam and J. C. Hardin, 3352 (1997).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.