×

Image multiplicative denoising using adaptive Euler’s elastica as the regularization. (English) Zbl 1481.94046

Summary: Variational models involving Euler’s elastica energy have been widely used in many fields of digital image processing, such as image inpainting and additive Gaussian noise removal. In this paper, according to the signal dependence of multiplicative noise, the Euler’s elastica functional is modified to adapt for the multiplicative denoising problem. And a novel multiplicative noise removal model based on adaptive Euler’s elastica is proposed. Furthermore, we develope two fast numerical algorithms to solve this high-order nonlinear model: Aiming at the evolution case of Euler-Lagrange equation, a semi-implicit iterative scheme is designed and the additive operator splitting algorithm is used to speed up the calculation; Expanding the augmented Lagrangian algorithm that has been successfully applied in recent years, we obtain a restricted proximal augmented Lagrangian method. Numerical experiments show the effectiveness of the two algorithms and the significant advantages of our model over the standard total variation denoising model in alleviating the staircase effect and restoring the tiny geometrical structures, especially, the line-like feature.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65R32 Numerical methods for inverse problems for integral equations
68U10 Computing methodologies for image processing
65K05 Numerical mathematical programming methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bioucas-Dias, JM; Figueiredo, MAT, Multiplicative noise removal using variable splitting and constrained optimization, IEEE Trans. Image Process., 19, 1720-1730 (2010) · Zbl 1371.94055 · doi:10.1109/TIP.2010.2045029
[2] Goodman, JW, Some fundamental properties of speckle, J. Opt. Soc. Am., 1917-1983, 66, 1145-1150 (1976) · doi:10.1364/JOSA.66.001145
[3] Tur, M.; Chin, KC; Goodman, JW, When is speckle noise multiplicative?, Appl. Opt., 21, 1157 (1982) · doi:10.1364/AO.21.001157
[4] Wagner, RF; Smith, SW; Sandrik, JM; Lopez, H., Statistics of speckle in ultrasound B-scans, IEEE Trans. Sonics Ultrasonics, 30, 156-163 (1983) · doi:10.1109/T-SU.1983.31404
[5] Bamler, R., Principles of synthetic aperture radar, Surv. Geophys., 21, 147-157 (2000) · doi:10.1023/A:1006790026612
[6] Parrilli, S.; Poderico, M.; Angelino, CV; Verdoliva, L., A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geoence Remote Sens., 50, 606-616 (2012) · doi:10.1109/TGRS.2011.2161586
[7] Huang, YM; Ng, MK; Wen, YW, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2, 20-40 (2009) · Zbl 1187.68655 · doi:10.1137/080712593
[8] Deledalle, CA; Denis, L.; Tupin, F., Iterative weighted maximum likelihood denoising with probabilistic patch-based weights, IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc., 18, 1-12 (2009) · Zbl 1371.94108
[9] Dong, Y.; Zeng, T., A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6, 1598-1625 (2013) · Zbl 1283.52012 · doi:10.1137/120870621
[10] Zhao, XL; Wang, F.; Ng, MK, A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imaging Sci., 7, 456-475 (2014) · Zbl 1296.65093 · doi:10.1137/13092472X
[11] Zhou, Z.; Guo, Z.; Dong, G.; Sun, J.; Zhang, D., A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24, 249-260 (2015) · Zbl 1408.94848 · doi:10.1109/TIP.2014.2376185
[12] Wang, F.; Zhao, X.; Ng, MK, Multiplicative noise and blur removal by framelet decomposition and \(l_1\)-based L-curve method, IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc., 25, 4222-4232 (2016) · Zbl 1408.94671 · doi:10.1109/TIP.2016.2583793
[13] Deledalle, C.; Denis, L.; Tabti, S.; Tupin, F., MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?, IEEE Trans. Image Process., 26, 4389-4403 (2017) · Zbl 1409.94107 · doi:10.1109/TIP.2017.2713946
[14] Aubert, G.; Aujol, JF, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68, 925-946 (2008) · Zbl 1151.68713 · doi:10.1137/060671814
[15] Chen, L.; Liu, X.; Wang, X.; Zhu, P., Multiplicative noise removal via nonlocal adaptive dictionary, J. Math. Imaging Vis., 54, 199-215 (2017) · Zbl 1371.94087 · doi:10.1007/s10851-015-0597-5
[16] Foucart, S.; Rauhut, H., An Invitation to Compressive Sensing (2013), New York: Springer, New York · Zbl 1315.94002 · doi:10.1007/978-0-8176-4948-7
[17] Zhang, J.; Chen, K., A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8, 1-26 (2015) · Zbl 1327.62388 · doi:10.1137/14097121X
[18] Wali, S.; Zhang, H.; Chang, H.; Wu, C., A new adaptive boosting total generalized variation (TGV) technique for image denoising and inpainting, J. Vis. Commun. Image Represent., 59, 39-51 (2019) · doi:10.1016/j.jvcir.2018.12.047
[19] Strong, D.M., Chan, T.: F: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Diffusion in Image Processing, UCLA Math Department CAM Report (1996)
[20] Dong, G., Guo, Z., Wu, B.: A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal. Abstract and Applied Analysis, 2013-6-5, 1-21 (2013) · Zbl 1470.94012
[21] Malik, JM; Perona, P., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639 (1990) · doi:10.1109/34.56205
[22] Yao, W.; Guo, Z.; Sun, J.; Wu, B.; Gao, H., Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations, SIAM J. Imaging Sci., 12, 839-873 (2019) · Zbl 1524.94037 · doi:10.1137/18M1187192
[23] Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63, 564-592 (2003) · Zbl 1028.68185
[24] Guillemot, C.; Meur, OL, Image inpainting: overview and recent advances, IEEE Signal Process. Mag., 31, 127-144 (2013) · doi:10.1109/MSP.2013.2273004
[25] Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57, 414-438 (2013) · Zbl 1282.65037
[26] Bae, E., Tai, X.C., Zhu, W.: Augmented lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imaging 11, 1-23 (2017) · Zbl 1416.94013
[27] Bae, E.; Shi, J.; Tai, XC, Graph cuts for curvature based image denoising, IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc., 20, 1199-1210 (2011) · Zbl 1372.94015 · doi:10.1109/TIP.2010.2090533
[28] Wali, S., Shakoor, A., Basit, A., Xie, L., Huang, C., Li, C.: An efficient method for Euler’s elastica based image deconvolution. IEEE Access 7, 61226-61239 (2019)
[29] Shi, K.; Guo, Z., On the existence of weak solutions for a curvature driven elliptic system applied to image inpainting, Appl. Math. Lett., 99, 106003 (2019) · Zbl 1431.35041 · doi:10.1016/j.aml.2019.106003
[30] Wu, C.; Tai, X-C, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imag. Sci., 3, 300-339 (2012) · Zbl 1206.90245 · doi:10.1137/090767558
[31] Goldstein, T., The split Bregman method for L1-regularized problems, SIAM J. Imag. Sci., 2, 1-21 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[32] Dhingra, NK; Khong, SZ; Jovanović, MR, The proximal augmented Lagrangian method for nonsmooth composite optimization, IEEE Trans. Autom. Control, 64, 2861-2868 (2019) · Zbl 1482.90168 · doi:10.1109/TAC.2018.2867589
[33] Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4, 313-344 (2011) · Zbl 1215.68262
[34] Zhang, J., Chen, R., Deng, C., Wang, S.: Fast linearized augmented Lagrangian method for Euler’s elastica model. Numer. Math. Theory Methods Appl. 10, 98-115 (2017) · Zbl 1389.94035
[35] Majee, S.; Ray, RK; Majee, AK, A gray level indicator-based regularized telegraph diffusion model: application to image despeckling, SIAM J. Imaging Sci., 13, 844-870 (2020) · Zbl 1444.35111 · doi:10.1137/19M1283033
[36] Poynton, C., Digital Video and HD: Algorithms and Interfaces (2003), San Francisco: Morgan Kaufmann, San Francisco
[37] Weickert, J.; Romeny, BMTH; Viergever, MA, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7, 398-410 (1998) · doi:10.1109/83.661190
[38] Ballester, C.; Bertalmio, M.; Caselles, V.; Sapiro, G.; Verdera, J., Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc., 10, 1200-1211 (2001) · Zbl 1037.68771 · doi:10.1109/83.935036
[39] Parikh, N.; Boyd, S., Proximal Algorithms (2014), Hanover: Now Publishers Inc., Hanover · doi:10.1561/9781601987174
[40] Hao, X. Hua; Wang, JH; Meng, FY; Pang, LP, An adaptive fixed-point proximity algorithm for solving total variation denoising models, Inf. Sci., 402, 69-81 (2017) · Zbl 1454.94018 · doi:10.1016/j.ins.2017.03.023
[41] Chan, TF; Esedoglu, S., Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65, 1817-1837 (2005) · Zbl 1096.94004 · doi:10.1137/040604297
[42] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 1-21 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[43] Chen, DQ; Zhou, Y., Multiplicative denoising based on linearized alternating direction method using discrepancy function constraint, J. Sci. Comput., 60, 483-504 (2014) · Zbl 1306.65167 · doi:10.1007/s10915-013-9803-z
[44] Jeong, T.; Woo, H.; Yun, S., Frame-based Poisson image restoration using a proximal linearized alternating direction method, Inverse Probl., 29, 075007 (2013) · Zbl 1322.94017 · doi:10.1088/0266-5611/29/7/075007
[45] Durand, S.; Fadili, J.; Nikolova, M., Multiplicative noise removal using L1 fidelity on frame coefficients, J. Math. Imaging Vis., 36, 201-226 (2010) · Zbl 1523.94007 · doi:10.1007/s10851-009-0180-z
[46] Wang, Z.; Bovik, AC; Sheikh, HR; Simoncelli, EP, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 1-14 (2004) · doi:10.1109/TIP.2004.839582
[47] Liu, J.; Osher, S., Block matching local SVD operator based sparsity and TV regularization for image denoising, J. Sci. Comput., 78, 1-18 (2019) · Zbl 1450.65078 · doi:10.1007/s10915-019-00927-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.