He, Ji-Huan On the fractal variational principle for the telegraph equation. (English) Zbl 1482.35005 Fractals 29, No. 1, Article ID 2150022, 5 p. (2021). MSC: 35A15 35A08 35R02 35R11 28A80 PDF BibTeX XML Cite \textit{J.-H. He}, Fractals 29, No. 1, Article ID 2150022, 5 p. (2021; Zbl 1482.35005) Full Text: DOI OpenURL
Zelik, S. V.; Ilyin, A. A.; Kostianko, A. G. Sharp dimension estimates for the attractors of the regularized damped Euler system. (English. Russian original) Zbl 1477.35149 Dokl. Math. 104, No. 1, 169-172 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 499, 13-16 (2021). MSC: 35Q31 35B65 35B41 76B03 76F65 28A80 PDF BibTeX XML Cite \textit{S. V. Zelik} et al., Dokl. Math. 104, No. 1, 169--172 (2021; Zbl 1477.35149); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 499, 13--16 (2021) Full Text: DOI OpenURL
Sahu, Abhilash; Priyadarshi, Amit Existence of multiple solutions of a Kirchhoff type \(p\)-Laplacian equation on the Sierpiński gasket. (English) Zbl 07247285 Acta Appl. Math. 168, 169-186 (2020). MSC: 35J92 28A80 35J61 PDF BibTeX XML Cite \textit{A. Sahu} and \textit{A. Priyadarshi}, Acta Appl. Math. 168, 169--186 (2020; Zbl 07247285) Full Text: DOI arXiv OpenURL
Qu, Aifang; Yuan, Hairong; Zhao, Qin High Mach number limit of one-dimensional piston problem for non-isentropic compressible Euler equations: polytropic gas. (English) Zbl 1432.76222 J. Math. Phys. 61, No. 1, 011507, 14 p. (2020). MSC: 76N15 76J20 76L05 35L67 28C05 35Q31 35D30 PDF BibTeX XML Cite \textit{A. Qu} et al., J. Math. Phys. 61, No. 1, 011507, 14 p. (2020; Zbl 1432.76222) Full Text: DOI arXiv OpenURL
Ciampa, Gennaro; Crippa, Gianluca; Spirito, Stefano Smooth approximation is not a selection principle for the transport equation with rough vector field. (English) Zbl 1428.35082 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 13, 21 p. (2020). MSC: 35F10 35Q31 35A02 34A12 35L65 35Q30 28D10 34G20 35F25 35Q35 PDF BibTeX XML Cite \textit{G. Ciampa} et al., Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 13, 21 p. (2020; Zbl 1428.35082) Full Text: DOI arXiv OpenURL
Březina, Jan; Feireisl, Eduard Measure-valued solutions to the complete Euler system revisited. (English) Zbl 1394.35336 Z. Angew. Math. Phys. 69, No. 3, Paper No. 57, 17 p. (2018). MSC: 35Q31 35L45 76N15 35B40 35D30 35R06 35Q79 28A20 PDF BibTeX XML Cite \textit{J. Březina} and \textit{E. Feireisl}, Z. Angew. Math. Phys. 69, No. 3, Paper No. 57, 17 p. (2018; Zbl 1394.35336) Full Text: DOI arXiv OpenURL
Santos, Marcelo M. Reduction of generalized Young measures. (English) Zbl 1378.35196 J. Hyperbolic Differ. Equ. 14, No. 2, 349-358 (2017). MSC: 35L65 35L60 46E27 28A33 PDF BibTeX XML Cite \textit{M. M. Santos}, J. Hyperbolic Differ. Equ. 14, No. 2, 349--358 (2017; Zbl 1378.35196) Full Text: DOI OpenURL
Finster, Felix; Kleiner, Johannes A Hamiltonian formulation of causal variational principles. (English) Zbl 1375.49060 Calc. Var. Partial Differ. Equ. 56, No. 3, Paper No. 73, 33 p. (2017). MSC: 49Q20 49S05 58C35 58Z05 49K21 49K27 53D30 28C99 83C47 PDF BibTeX XML Cite \textit{F. Finster} and \textit{J. Kleiner}, Calc. Var. Partial Differ. Equ. 56, No. 3, Paper No. 73, 33 p. (2017; Zbl 1375.49060) Full Text: DOI arXiv OpenURL
Rodiac, Rémy Regularity properties of stationary harmonic functions whose Laplacian is a Radon measure. (English) Zbl 1439.35590 SIAM J. Math. Anal. 48, No. 4, 2495-2531 (2016). MSC: 35R60 28C05 PDF BibTeX XML Cite \textit{R. Rodiac}, SIAM J. Math. Anal. 48, No. 4, 2495--2531 (2016; Zbl 1439.35590) Full Text: DOI arXiv OpenURL
Zelikin, M. I. Fractal theory of Saturn’s ring. (English. Russian original) Zbl 1337.85001 Proc. Steklov Inst. Math. 291, 87-101 (2015); translation from Tr. Mat. Inst. Steklova 291, 95-111 (2015). MSC: 85A15 85A05 76Y05 37F35 70F15 28A80 35Q20 37N20 35Q31 76E20 PDF BibTeX XML Cite \textit{M. I. Zelikin}, Proc. Steklov Inst. Math. 291, 87--101 (2015; Zbl 1337.85001); translation from Tr. Mat. Inst. Steklova 291, 95--111 (2015) Full Text: DOI arXiv OpenURL
Jumarie, Guy A non-standard practical variational approach via fractional calculus to the optimal control of fractional stochastic systems driven by white noises. (English) Zbl 1292.93151 Int. J. Math. Game Theory Algebra 22, No. 3, 293-368 (2013). MSC: 93E20 60H40 60G22 28A80 PDF BibTeX XML Cite \textit{G. Jumarie}, Int. J. Math. Game Theory Algebra 22, No. 3, 293--368 (2013; Zbl 1292.93151) OpenURL
Dudnikova, T. V. Deriving hydrodynamic equations for lattice systems. (English. Russian original) Zbl 1274.82066 Theor. Math. Phys. 169, No. 3, 1668-1682 (2011); translation from Teor. Mat. Fiz. 169, No. 3, 352-367 (2011). MSC: 82D25 28C20 76D05 81T27 PDF BibTeX XML Cite \textit{T. V. Dudnikova}, Theor. Math. Phys. 169, No. 3, 1668--1682 (2011; Zbl 1274.82066); translation from Teor. Mat. Fiz. 169, No. 3, 352--367 (2011) Full Text: DOI OpenURL
Kwong, Man Kam; Pašić, Mervan; Wong, James S. W. Rectifiable oscillations in second-order linear differential equations. (English) Zbl 1168.34027 J. Differ. Equations 245, No. 8, 2333-2351 (2008). Reviewer: Antonio Linero Bas (Murcia) MSC: 34C10 34A30 28A75 PDF BibTeX XML Cite \textit{M. K. Kwong} et al., J. Differ. Equations 245, No. 8, 2333--2351 (2008; Zbl 1168.34027) Full Text: DOI OpenURL
Baleanu, Dumitru; Muslih, Sami I. Fractional Euler-Lagrange and fractional Hamilton equations for super symmetric classical model. (English) Zbl 1152.26006 Fractals 15, No. 4, 379-383 (2007). Reviewer: Zu-Guo Yu (Brisbane) MSC: 26A33 28A80 PDF BibTeX XML Cite \textit{D. Baleanu} and \textit{S. I. Muslih}, Fractals 15, No. 4, 379--383 (2007; Zbl 1152.26006) Full Text: DOI OpenURL
Jacobsen, Jon; Lewis, Owen; Tennis, Bradley Approximations of continuous Newton’s method: an extension of Cayley’s problem. (English) Zbl 1118.65046 Electron. J. Differ. Equ. 2007, Conf. 15, 163-173 (2007). MSC: 65H10 58C15 28A80 PDF BibTeX XML Cite \textit{J. Jacobsen} et al., Electron. J. Differ. Equ. 2007, 163--173 (2007; Zbl 1118.65046) Full Text: EuDML EMIS Link OpenURL
Chen, Gui-Qiang; Frid, Hermano On the theory of divergence-measure fields and its applications. (English) Zbl 1024.28009 Bol. Soc. Bras. Mat., Nova Sér. 32, No. 3, 401-433 (2001). MSC: 28B05 35L65 35B35 76N10 PDF BibTeX XML Cite \textit{G.-Q. Chen} and \textit{H. Frid}, Bol. Soc. Bras. Mat., Nova Sér. 32, No. 3, 401--433 (2001; Zbl 1024.28009) Full Text: DOI OpenURL
Dutrifoy, Alexandre Construction of a function which is continuous from \([0,1]\) into certain Banach spaces and non-measurable from \([0,1]\) into another space with some more strong topology. (Construction d’une fonction \(f\) continue de \([0,1]\) dans certains espaces de Banach et non mesurable de \([0,1]\) dans un autre, de topologie légèrement plus forte.) (French) Zbl 0972.28001 Bull. Belg. Math. Soc. - Simon Stevin 7, No. 2, 211-214 (2000). MSC: 28A20 35Q30 40A30 PDF BibTeX XML Cite \textit{A. Dutrifoy}, Bull. Belg. Math. Soc. - Simon Stevin 7, No. 2, 211--214 (2000; Zbl 0972.28001) OpenURL
Bildhauer, Michael On the Hausdorff dimension of \(n \times m\) concentration sets. (English) Zbl 0846.35104 Asymptotic Anal. 11, No. 2, 169-184 (1995). MSC: 35Q35 76B47 28A78 PDF BibTeX XML Cite \textit{M. Bildhauer}, Asymptotic Anal. 11, No. 2, 169--184 (1995; Zbl 0846.35104) OpenURL
Nussenzveig Lopes, Helena J. An estimate on the Hausdorff dimension of a concentration set for the incompressible 2-\(D\) Euler equations. (English) Zbl 0807.35113 Indiana Univ. Math. J. 43, No. 2, 521-534 (1994). MSC: 35Q35 76D07 28A78 PDF BibTeX XML Cite \textit{H. J. Nussenzveig Lopes}, Indiana Univ. Math. J. 43, No. 2, 521--534 (1994; Zbl 0807.35113) Full Text: DOI OpenURL
Bethuel, Fabrice Some applications of the coarea formula to partial differential equations. (English) Zbl 0879.35028 Pràstaro, A. (ed.) et al., Geometry in partial differential equations. Singapore: World Scientific. 1-17 (1994). MSC: 35B45 49Q15 28A75 58C35 PDF BibTeX XML Cite \textit{F. Bethuel}, in: Geometry in partial differential equations. Singapore: World Scientific. 1--17 (1994; Zbl 0879.35028) OpenURL
Capiński, Marek; Cutland, Nigel J. The Euler equation: A uniform nonstandard construction of a global flow, invariant measures and statistical solutions. (English) Zbl 0779.35084 Ann. Appl. Probab. 3, No. 1, 212-227 (1993). Reviewer: W.Kotarski (Katowice) MSC: 35Q05 28E05 35R60 58J70 26E35 60H15 PDF BibTeX XML Cite \textit{M. Capiński} and \textit{N. J. Cutland}, Ann. Appl. Probab. 3, No. 1, 212--227 (1993; Zbl 0779.35084) Full Text: DOI OpenURL
Dawidowski, Marian; Kubiaczyk, Ireneusz On bounded solutions of hyperbolic differential inclusion in Banach spaces. (English) Zbl 0780.35120 Demonstr. Math. 25, No. 1-2, 153-159 (1992). MSC: 35R70 35L70 35Q05 28B20 28C05 PDF BibTeX XML Cite \textit{M. Dawidowski} and \textit{I. Kubiaczyk}, Demonstr. Math. 25, No. 1--2, 153--159 (1992; Zbl 0780.35120) OpenURL
Cruzeiro, A.-B. Invariant measures for Euler and Navier-Stokes. (English) Zbl 0698.35167 Stochastic analysis, path integration and dynamics, Proc. Summer Stochastics Symp., Warwick/UK 1987, Pitman Res. Notes Math. Ser. 200, 73-82 (1989). Reviewer: A.-B.Cruzeiro MSC: 35R60 35Q30 60H15 28D05 PDF BibTeX XML OpenURL
Moreau, J.-J. An expression of classical dynamics. (English) Zbl 0677.73004 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6, Suppl., 1-48 (1989). Reviewer: V.Komkov MSC: 74Axx 49J52 28E05 70H25 46S20 58D20 58A30 58J60 PDF BibTeX XML Cite \textit{J. J. Moreau}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6, 1--48 (1989; Zbl 0677.73004) Full Text: DOI Numdam EuDML OpenURL
Hamilton, E. P.; Nashed, M. Z. Variational derivatives and p-gradients of functionals on spaces of continuously differentiable functions. (English) Zbl 0556.49006 Math. Methods Appl. Sci. 5, 530-543 (1983). Reviewer: A.Kusraev MSC: 49J50 46G05 58C20 26E15 46N99 28C20 PDF BibTeX XML Cite \textit{E. P. Hamilton} and \textit{M. Z. Nashed}, Math. Methods Appl. Sci. 5, 530--543 (1983; Zbl 0556.49006) Full Text: DOI OpenURL
Bentkus, V. Ju. The existence and uniqueness of a solution of Poisson’s equation for generalized measures in an infinite-dimensional space. (English. Russian original) Zbl 0348.28007 Math. Notes 20(1976), 1020-1025 (1977); translation from Mat. Zametki 20, 825-834 (1976). MSC: 28A15 34B30 35Q05 PDF BibTeX XML Cite \textit{V. Ju. Bentkus}, Math. Notes 20, 1020--1025 (1977; Zbl 0348.28007); translation from Mat. Zametki 20, 825--834 (1976) Full Text: DOI OpenURL