De Rosa, Luigi; Tione, Riccardo Sharp energy regularity and typicality results for Hölder solutions of incompressible Euler equations. (English) Zbl 07511977 Anal. PDE 15, No. 2, 405-428 (2022). MSC: 35Q31 35D30 76B03 26A21 PDF BibTeX XML Cite \textit{L. De Rosa} and \textit{R. Tione}, Anal. PDE 15, No. 2, 405--428 (2022; Zbl 07511977) Full Text: DOI OpenURL
Mahmudov, Elimhan N. Optimal control of second order sweeping processes with discrete and differential inclusions. (English) Zbl 07499221 J. Convex Anal. 29, No. 1, 269-290 (2022). MSC: 49J15 34A60 34A40 26D10 PDF BibTeX XML Cite \textit{E. N. Mahmudov}, J. Convex Anal. 29, No. 1, 269--290 (2022; Zbl 07499221) Full Text: Link OpenURL
Hynd, Ryan Newton’s second law with a semiconvex potential. (English) Zbl 07479048 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 11, 34 p. (2022). MSC: 35Q31 35Q83 35L65 60B10 26B25 35D30 PDF BibTeX XML Cite \textit{R. Hynd}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 11, 34 p. (2022; Zbl 07479048) Full Text: DOI arXiv OpenURL
Płociniczak, Łukasz On a discrete composition of the fractional integral and Caputo derivative. (English) Zbl 07474635 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106234, 6 p. (2022). MSC: 26A33 34A08 35R11 65R20 PDF BibTeX XML Cite \textit{Ł. Płociniczak}, Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106234, 6 p. (2022; Zbl 07474635) Full Text: DOI arXiv OpenURL
Behera, S.; Saha Ray, S. An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra delay-integro-differential equations. (English) Zbl 07472412 J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022). MSC: 65T60 65R20 26A33 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022; Zbl 07472412) Full Text: DOI OpenURL
Liu, Xing High-accuracy time discretization of stochastic fractional diffusion equation. (English) Zbl 07435363 J. Sci. Comput. 90, No. 1, Paper No. 19, 24 p. (2022). MSC: 65Mxx 26A33 65M60 65L20 65C30 PDF BibTeX XML Cite \textit{X. Liu}, J. Sci. Comput. 90, No. 1, Paper No. 19, 24 p. (2022; Zbl 07435363) Full Text: DOI arXiv OpenURL
Taherpour, Vahid; Nazari, Mojtaba; Nemati, Ali A new numerical Bernoulli polynomial method for solving fractional optimal control problems with vector components. (English) Zbl 07468444 Comput. Methods Differ. Equ. 9, No. 2, 446-466 (2021). MSC: 49J15 65N35 26A33 11B68 PDF BibTeX XML Cite \textit{V. Taherpour} et al., Comput. Methods Differ. Equ. 9, No. 2, 446--466 (2021; Zbl 07468444) Full Text: DOI OpenURL
Cheng, Jin-fa Fractional sum and fractional difference on non-uniform lattices and analogue of Euler and Cauchy beta formulas. (English) Zbl 07439146 Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 420-442 (2021). MSC: 39A13 33C45 33D45 26A33 34K37 PDF BibTeX XML Cite \textit{J.-f. Cheng}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 420--442 (2021; Zbl 07439146) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels. (English) Zbl 1476.65335 Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021). MSC: 65R20 65T60 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021; Zbl 1476.65335) Full Text: DOI OpenURL
Guo, Bai-Ni; Qi, Feng Viewing some ordinary differential equations from the angle of derivative polynomials. (English) Zbl 07426499 Iran. J. Math. Sci. Inform. 16, No. 1, 77-95 (2021). MSC: 11B68 11B83 26A24 33B10 34A34 PDF BibTeX XML Cite \textit{B.-N. Guo} and \textit{F. Qi}, Iran. J. Math. Sci. Inform. 16, No. 1, 77--95 (2021; Zbl 07426499) Full Text: Link OpenURL
Singha, N.; Nahak, C. Natural boundary conditions for a class of generalized fractional variational problem. (English) Zbl 1475.49010 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 5, 305-323 (2021). MSC: 49J21 26A33 49K20 49M05 PDF BibTeX XML Cite \textit{N. Singha} and \textit{C. Nahak}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 5, 305--323 (2021; Zbl 1475.49010) Full Text: Link OpenURL
Wang, Jiayi Balance of the vorticity direction and the vorticity magnitude in 3D fractional Navier-Stokes equations. (English) Zbl 1479.35637 Appl. Math. Optim. 84, No. 2, 1485-1491 (2021). MSC: 35Q30 35Q31 35B65 76D05 76D17 76B47 26A33 35R11 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Math. Optim. 84, No. 2, 1485--1491 (2021; Zbl 1479.35637) Full Text: DOI arXiv OpenURL
Ao, Weiwei; Dávila, Juan; Del Pino, Manuel; Musso, Monica; Wei, Juncheng Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation. (English) Zbl 1477.35153 Trans. Am. Math. Soc. 374, No. 9, 6665-6689 (2021). MSC: 35Q35 35Q31 35Q86 35J61 35C07 35B25 76B47 76U60 76X05 86A05 26A33 35R11 PDF BibTeX XML Cite \textit{W. Ao} et al., Trans. Am. Math. Soc. 374, No. 9, 6665--6689 (2021; Zbl 1477.35153) Full Text: DOI arXiv OpenURL
Bourdin, Loïc; Ferreira, Rui A. C. Legendre’s necessary condition for fractional Bolza functionals with mixed initial/final constraints. (English) Zbl 1471.49017 J. Optim. Theory Appl. 190, No. 2, 672-708 (2021). MSC: 49K05 26A33 34A08 PDF BibTeX XML Cite \textit{L. Bourdin} and \textit{R. A. C. Ferreira}, J. Optim. Theory Appl. 190, No. 2, 672--708 (2021; Zbl 1471.49017) Full Text: DOI arXiv OpenURL
Homeier, Herbert H. H.; Srivastava, Hari M.; Masjed-Jamei, Mohammad; Moalemi, Zahra Some weighted quadrature methods based upon the mean value theorems. (English) Zbl 1469.41011 Math. Methods Appl. Sci. 44, No. 5, 3840-3856 (2021). MSC: 41A55 26A24 41A58 65D30 PDF BibTeX XML Cite \textit{H. H. H. Homeier} et al., Math. Methods Appl. Sci. 44, No. 5, 3840--3856 (2021; Zbl 1469.41011) Full Text: DOI OpenURL
Aruldoss, R.; Anusuya Devi, R.; Murali Krishna, P. An expeditious wavelet-based numerical scheme for solving fractional differential equations. (English) Zbl 1467.65076 Comput. Appl. Math. 40, No. 1, Paper No. 2, 14 p. (2021). MSC: 65L60 26A33 34A08 PDF BibTeX XML Cite \textit{R. Aruldoss} et al., Comput. Appl. Math. 40, No. 1, Paper No. 2, 14 p. (2021; Zbl 1467.65076) Full Text: DOI OpenURL
Eroǧlu, Beyza Billur İskender; Yapışkan, Dilara Generalized conformable variational calculus and optimal control problems with variable terminal conditions. (English) Zbl 07515654 AIMS Math. 5, No. 2, 1105-1126 (2020). MSC: 49K15 26A24 PDF BibTeX XML Cite \textit{B. B. İ. Eroǧlu} and \textit{D. Yapışkan}, AIMS Math. 5, No. 2, 1105--1126 (2020; Zbl 07515654) Full Text: DOI OpenURL
Ameen, Ismail; Baleanu, Dumitru; Ali, Hegagi Mohamed An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. (English) Zbl 07501464 Chaos Solitons Fractals 137, Article ID 109892, 11 p. (2020). MSC: 93A30 26A33 49J15 47N40 93D20 PDF BibTeX XML Cite \textit{I. Ameen} et al., Chaos Solitons Fractals 137, Article ID 109892, 11 p. (2020; Zbl 07501464) Full Text: DOI OpenURL
El-Sayed, A. M. A.; Rida, S. Z.; Gaber, Y. A. Dynamical of curative and preventive treatments in a two-stage plant disease model of fractional order. (English) Zbl 07501463 Chaos Solitons Fractals 137, Article ID 109879, 10 p. (2020). MSC: 92D30 26A33 35B09 34K20 47N40 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} et al., Chaos Solitons Fractals 137, Article ID 109879, 10 p. (2020; Zbl 07501463) Full Text: DOI OpenURL
Gohar, Madiha; Li, Changpin; Yin, Chuntao On Caputo-Hadamard fractional differential equations. (English) Zbl 07476005 Int. J. Comput. Math. 97, No. 7, 1459-1483 (2020). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{M. Gohar} et al., Int. J. Comput. Math. 97, No. 7, 1459--1483 (2020; Zbl 07476005) Full Text: DOI OpenURL
Simsek, Yilmaz A new family of combinatorial numbers and polynomials associated with Peters numbers and polynomials. (English) Zbl 1474.11073 Appl. Anal. Discrete Math. 14, No. 3, 627-640 (2020). MSC: 11B83 05A15 12D10 11B68 26C05 PDF BibTeX XML Cite \textit{Y. Simsek}, Appl. Anal. Discrete Math. 14, No. 3, 627--640 (2020; Zbl 1474.11073) Full Text: DOI OpenURL
Moghadam, Abolfazl Soltanpour; Arabameri, Maryam; Baleanu, Dumitru; Barfeie, Mahdiar Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. (English) Zbl 07242859 Math. Methods Appl. Sci. 43, No. 7, 3936-3953 (2020). MSC: 65T60 35R11 26A33 11B68 PDF BibTeX XML Cite \textit{A. S. Moghadam} et al., Math. Methods Appl. Sci. 43, No. 7, 3936--3953 (2020; Zbl 07242859) Full Text: DOI OpenURL
Ponce, Rodrigo Time discretization of fractional subdiffusion equations via fractional resolvent operators. (English) Zbl 1446.65075 Comput. Math. Appl. 80, No. 4, 69-92 (2020). MSC: 65M06 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{R. Ponce}, Comput. Math. Appl. 80, No. 4, 69--92 (2020; Zbl 1446.65075) Full Text: DOI OpenURL
Tang, Ting A nonexistence result for discrete systems related to the reversed Hardy-Littlewood-Sobolev inequality. (English) Zbl 1444.26039 Math. Inequal. Appl. 23, No. 2, 433-438 (2020). Reviewer: V. Lokesha (Bangalore) MSC: 26D15 40B05 47J20 PDF BibTeX XML Cite \textit{T. Tang}, Math. Inequal. Appl. 23, No. 2, 433--438 (2020; Zbl 1444.26039) Full Text: DOI OpenURL
Khader, M. M.; Sweilam, N. H.; Kharrat, B. N. Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation. (English) Zbl 1448.65071 Appl. Appl. Math. 15, No. 1, 655-665 (2020). MSC: 65L06 41A30 34A08 26A33 65D25 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Appl. Math. 15, No. 1, 655--665 (2020; Zbl 1448.65071) Full Text: Link OpenURL
Jin, Bangti; Zhou, Zhi Incomplete iterative solution of subdiffusion. (English) Zbl 1453.65326 Numer. Math. 145, No. 3, 693-725 (2020). MSC: 65M60 65M06 65N30 65N55 65M15 65F10 35R11 26A33 PDF BibTeX XML Cite \textit{B. Jin} and \textit{Z. Zhou}, Numer. Math. 145, No. 3, 693--725 (2020; Zbl 1453.65326) Full Text: DOI arXiv OpenURL
Jarad, Fahd; Abdeljawad, Thabet Variational principles in the frame of certain generalized fractional derivatives. (English) Zbl 1439.49005 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 695-708 (2020). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J15 26A33 49K15 49-02 34A08 PDF BibTeX XML Cite \textit{F. Jarad} and \textit{T. Abdeljawad}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 695--708 (2020; Zbl 1439.49005) Full Text: DOI OpenURL
Bahaa, G. M. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu’s derivatives and application. (English) Zbl 1439.49016 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 485-501 (2020). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J40 49N10 26A33 34A08 49J20 35R11 49J15 49K20 PDF BibTeX XML Cite \textit{G. M. Bahaa}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 485--501 (2020; Zbl 1439.49016) Full Text: DOI OpenURL
Oloniiju, Shina D.; Goqo, Sicelo P.; Sibanda, Precious A Chebyshev pseudo-spectral method for the multi-dimensional fractional Rayleigh problem for a generalized Maxwell fluid with Robin boundary conditions. (English) Zbl 1435.65176 Appl. Numer. Math. 152, 253-266 (2020). MSC: 65M70 65M12 65M15 65D05 65D32 41A50 35Q31 76W05 26A33 35R11 PDF BibTeX XML Cite \textit{S. D. Oloniiju} et al., Appl. Numer. Math. 152, 253--266 (2020; Zbl 1435.65176) Full Text: DOI OpenURL
Colombo, Maria; De Rosa, Luigi Regularity in time of Hölder solutions of Euler and hypodissipative Navier-Stokes equations. (English) Zbl 1439.35381 SIAM J. Math. Anal. 52, No. 1, 221-238 (2020). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 35Q31 35A01 35D30 35Q30 35B65 76D05 26A33 35R11 PDF BibTeX XML Cite \textit{M. Colombo} and \textit{L. De Rosa}, SIAM J. Math. Anal. 52, No. 1, 221--238 (2020; Zbl 1439.35381) Full Text: DOI arXiv OpenURL
Simsek, Yilmaz; So, Ji Suk Identities, inequalities for Boole-type polynomials: approach to generating functions and infinite series. (English) Zbl 07459090 J. Inequal. Appl. 2019, Paper No. 62, 11 p. (2019). MSC: 05A15 05A10 11B83 26C05 30D05 35A99 PDF BibTeX XML Cite \textit{Y. Simsek} and \textit{J. S. So}, J. Inequal. Appl. 2019, Paper No. 62, 11 p. (2019; Zbl 07459090) Full Text: DOI OpenURL
Eftekhari, Ali Double exponential Euler-sinc collocation method for a time-fractional convection-diffusion equation. (English) Zbl 1474.65386 Facta Univ., Ser. Math. Inf. 34, No. 4, 745-753 (2019). MSC: 65M70 65N35 26A33 35R11 33B99 42C10 65M22 PDF BibTeX XML Cite \textit{A. Eftekhari}, Facta Univ., Ser. Math. Inf. 34, No. 4, 745--753 (2019; Zbl 1474.65386) Full Text: DOI OpenURL
Chatibi, Y.; El Kinani, E. H.; Ouhadan, A. Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel. (English) Zbl 1442.49026 Chaos Solitons Fractals 118, 117-121 (2019). MSC: 49K20 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Chatibi} et al., Chaos Solitons Fractals 118, 117--121 (2019; Zbl 1442.49026) Full Text: DOI OpenURL
Kuzenov, Viktor V.; Ryzhkov, Sergeĭ V. Mathematical modeling of plasma dynamics for processes in capillary discharges. (English) Zbl 1447.82029 Nelineĭn. Din. 15, No. 4, 543-550 (2019). MSC: 82D10 82D05 35Q31 65M06 65L06 82M20 82M99 35R11 26A33 PDF BibTeX XML Cite \textit{V. V. Kuzenov} and \textit{S. V. Ryzhkov}, Nelineĭn. Din. 15, No. 4, 543--550 (2019; Zbl 1447.82029) Full Text: DOI MNR OpenURL
Cresson, Jacky; Szafrańska, Anna About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof. (English) Zbl 1473.70038 Fract. Calc. Appl. Anal. 22, No. 4, 871-898 (2019). MSC: 70H33 26A33 34A08 49K05 PDF BibTeX XML Cite \textit{J. Cresson} and \textit{A. Szafrańska}, Fract. Calc. Appl. Anal. 22, No. 4, 871--898 (2019; Zbl 1473.70038) Full Text: DOI arXiv OpenURL
Armand, Atefeh; Allahviranloo, Tofigh; Abbasbandy, Saeid; Gouyandeh, Zeinab The fuzzy generalized Taylor’s expansion with application in fractional differential equations. (English) Zbl 1429.26044 Iran. J. Fuzzy Syst. 16, No. 2, 57-72 (2019). MSC: 26E50 26A33 34A07 34A08 PDF BibTeX XML Cite \textit{A. Armand} et al., Iran. J. Fuzzy Syst. 16, No. 2, 57--72 (2019; Zbl 1429.26044) Full Text: DOI OpenURL
Djida, Jean-Daniel; Mophou, Gisèle; Area, Iván Optimal control of diffusion equation with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. (English) Zbl 1421.49004 J. Optim. Theory Appl. 182, No. 2, 540-557 (2019). MSC: 49J20 49K20 26A33 PDF BibTeX XML Cite \textit{J.-D. Djida} et al., J. Optim. Theory Appl. 182, No. 2, 540--557 (2019; Zbl 1421.49004) Full Text: DOI arXiv OpenURL
Srivastava, H. M.; Ricci, Paolo Emilio; Natalini, Pierpaolo A family of complex Appell polynomial sets. (English) Zbl 1435.11058 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2359-2371 (2019). MSC: 11B83 11B68 33D99 26C05 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2359--2371 (2019; Zbl 1435.11058) Full Text: DOI OpenURL
Srivastava, H. M.; Özarslan, M. A.; Yaşar, Banu Yılmaz Difference equations for a class of twice-iterated \(\Delta _{h}\)-Appell sequences of polynomials. (English) Zbl 1439.11069 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1851-1871 (2019). MSC: 11B68 33E20 39A70 26C05 33E30 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1851--1871 (2019; Zbl 1439.11069) Full Text: DOI OpenURL
Sweilam, N. H.; AL-Mekhlafi, S. M. Optimal control for a time delay multi-strain tuberculosis fractional model: a numerical approach. (English) Zbl 1417.92198 IMA J. Math. Control Inf. 36, No. 1, 317-340 (2019). MSC: 92D30 93C23 26A33 49N90 PDF BibTeX XML Cite \textit{N. H. Sweilam} and \textit{S. M. AL-Mekhlafi}, IMA J. Math. Control Inf. 36, No. 1, 317--340 (2019; Zbl 1417.92198) Full Text: DOI OpenURL
Chambolle, Antonin; Pock, Thomas Total roto-translational variation. (English) Zbl 1418.53004 Numer. Math. 142, No. 3, 611-666 (2019). MSC: 53A04 49Q20 26A45 35J35 53A40 65K10 PDF BibTeX XML Cite \textit{A. Chambolle} and \textit{T. Pock}, Numer. Math. 142, No. 3, 611--666 (2019; Zbl 1418.53004) Full Text: DOI arXiv OpenURL
Amin, Muhammad; Abbas, Muhammad; Iqbal, Muhammad Kashif; Baleanu, Dumitru Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations. (English) Zbl 1459.35372 Adv. Difference Equ. 2019, Paper No. 183, 22 p. (2019). MSC: 35R11 26A33 65M12 65M06 65M70 65D07 PDF BibTeX XML Cite \textit{M. Amin} et al., Adv. Difference Equ. 2019, Paper No. 183, 22 p. (2019; Zbl 1459.35372) Full Text: DOI OpenURL
Krishnarajulu, Krishnaveni; Sevugan, Raja Balachandar; Gopalakrishnan, Venkatesh Sivaramakrishnan A new approach to space fractional differential equations based on fractional order Euler polynomials. (English) Zbl 07476451 Publ. Inst. Math., Nouv. Sér. 104(118), 157-168 (2018). MSC: 49K20 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{K. Krishnarajulu} et al., Publ. Inst. Math., Nouv. Sér. 104(118), 157--168 (2018; Zbl 07476451) Full Text: DOI OpenURL
Şimşek, Yılmaz Combinatorial sums and binomial identities associated with the beta-type polynomials. (English) Zbl 07406308 Hacet. J. Math. Stat. 47, No. 5, 1144-1155 (2018). MSC: 05A15 11B68 11S80 26C05 26C10 30C15 43A40 PDF BibTeX XML Cite \textit{Y. Şimşek}, Hacet. J. Math. Stat. 47, No. 5, 1144--1155 (2018; Zbl 07406308) Full Text: Link OpenURL
Kruse, Raphael; Scheutzow, Michael A discrete stochastic Gronwall lemma. (English) Zbl 1482.60093 Math. Comput. Simul. 143, 149-157 (2018). MSC: 60H35 60G42 26D15 PDF BibTeX XML Cite \textit{R. Kruse} and \textit{M. Scheutzow}, Math. Comput. Simul. 143, 149--157 (2018; Zbl 1482.60093) Full Text: DOI arXiv OpenURL
Ahmed, Hoda F. Fractional Euler method; an effective tool for solving fractional differential equations. (English) Zbl 1437.65070 J. Egypt. Math. Soc. 26, 38-43 (2018). MSC: 65L06 65L05 34A08 26A33 PDF BibTeX XML Cite \textit{H. F. Ahmed}, J. Egypt. Math. Soc. 26, 38--43 (2018; Zbl 1437.65070) Full Text: DOI OpenURL
Bolza, Oskar Lectures on the calculus of variations. Reprint of the 1904 original published by the University of Chicago Press. (English) Zbl 1422.49001 Mineola, NY: Dover Publications (ISBN 978-0-486-82236-5). xi, 271 p. (2018). MSC: 49-00 49-01 49K05 49K10 26B10 34A12 PDF BibTeX XML Cite \textit{O. Bolza}, Lectures on the calculus of variations. Reprint of the 1904 original published by the University of Chicago Press. Mineola, NY: Dover Publications (2018; Zbl 1422.49001) OpenURL
Golińska, Anna Semigroups of Hadamard multipliers on the space of real analytic functions. (English) Zbl 1475.47024 Ann. Pol. Math. 121, No. 3, 217-229 (2018). MSC: 47D06 26E05 30B40 46E10 PDF BibTeX XML Cite \textit{A. Golińska}, Ann. Pol. Math. 121, No. 3, 217--229 (2018; Zbl 1475.47024) Full Text: DOI arXiv OpenURL
Wang, Yanxin; Zhu, Li; Wang, Zhi Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. (English) Zbl 1446.45009 Adv. Difference Equ. 2018, Paper No. 254, 13 p. (2018). MSC: 45J05 26A33 65R20 PDF BibTeX XML Cite \textit{Y. Wang} et al., Adv. Difference Equ. 2018, Paper No. 254, 13 p. (2018; Zbl 1446.45009) Full Text: DOI OpenURL
Sweilam, N. H.; Al-Mekhlafi, S. M.; Baleanu, D. Efficient numerical treatments for a fractional optimal control nonlinear tuberculosis model. (English) Zbl 1407.65226 Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018). MSC: 65M70 26A33 35R11 65H10 49M15 92C50 92C60 49K20 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018; Zbl 1407.65226) Full Text: DOI OpenURL
Simsek, Yilmaz Construction method for generating functions of special numbers and polynomials arising from analysis of new operators. (English) Zbl 06986336 Math. Methods Appl. Sci. 41, No. 16, 6934-6954 (2018). MSC: 47B39 42B05 05A15 05A10 11B68 05A19 12D10 26C05 47B33 47B39 54C30 65Qxx PDF BibTeX XML Cite \textit{Y. Simsek}, Math. Methods Appl. Sci. 41, No. 16, 6934--6954 (2018; Zbl 06986336) Full Text: DOI OpenURL
Jajarmi, Amin; Baleanu, Dumitru Suboptimal control of fractional-order dynamic systems with delay argument. (English) Zbl 1400.93126 J. Vib. Control 24, No. 12, 2430-2446 (2018). MSC: 93C25 26A33 PDF BibTeX XML Cite \textit{A. Jajarmi} and \textit{D. Baleanu}, J. Vib. Control 24, No. 12, 2430--2446 (2018; Zbl 1400.93126) Full Text: DOI OpenURL
Zaky, Mahmoud A. A research note on the nonstandard finite difference method for solving variable-order fractional optimal control problems. (English) Zbl 1400.26018 J. Vib. Control 24, No. 11, 2109-2111 (2018). MSC: 26A33 93C23 PDF BibTeX XML Cite \textit{M. A. Zaky}, J. Vib. Control 24, No. 11, 2109--2111 (2018; Zbl 1400.26018) Full Text: DOI OpenURL
Karaa, Samir; Pani, Amiya K. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. (English) Zbl 1404.65114 ESAIM, Math. Model. Numer. Anal. 52, No. 2, 773-801 (2018). MSC: 65M08 65M60 65M12 65M15 65M06 35R11 26A33 65D32 44A10 PDF BibTeX XML Cite \textit{S. Karaa} and \textit{A. K. Pani}, ESAIM, Math. Model. Numer. Anal. 52, No. 2, 773--801 (2018; Zbl 1404.65114) Full Text: DOI arXiv OpenURL
Himmel, Martin; Matkowski, Janusz Directional convexity and characterizations of beta and gamma functions. (English) Zbl 1400.33003 J. Convex Anal. 25, No. 3, 927-938 (2018). Reviewer: Stefan Groote (Tartu) MSC: 33B15 26B25 39B22 PDF BibTeX XML Cite \textit{M. Himmel} and \textit{J. Matkowski}, J. Convex Anal. 25, No. 3, 927--938 (2018; Zbl 1400.33003) Full Text: arXiv Link OpenURL
Delkhosh, Mehdi; Parand, Kourosh; Yousefi, Hossein Accurate numerical solution for a type of astrophysics equations using three classes of Euler functions. (English) Zbl 1413.65300 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 1, 39-49 (2018). MSC: 65L60 34G20 26A33 65M70 PDF BibTeX XML Cite \textit{M. Delkhosh} et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 1, 39--49 (2018; Zbl 1413.65300) OpenURL
Shishkina, E. L. Singular Cauchy problem for the general Euler-Poisson-Darboux equation. (English) Zbl 06892344 Open Math. 16, 23-31 (2018). MSC: 35Q05 26A33 44A15 PDF BibTeX XML Cite \textit{E. L. Shishkina}, Open Math. 16, 23--31 (2018; Zbl 06892344) Full Text: DOI OpenURL
Schachter, Benjamin A new class of first order displacement convex functionals. (English) Zbl 1407.35002 SIAM J. Math. Anal. 50, No. 2, 1779-1789 (2018). MSC: 35A15 35Q31 49K20 26B25 PDF BibTeX XML Cite \textit{B. Schachter}, SIAM J. Math. Anal. 50, No. 2, 1779--1789 (2018; Zbl 1407.35002) Full Text: DOI OpenURL
Mahmudov, Elimhan N. Convex optimization of second order discrete and differential inclusions with inequality constraints. (English) Zbl 1386.49027 J. Convex Anal. 25, No. 1, 293-318 (2018). MSC: 49K15 34A60 34A40 26D10 49J53 49M25 PDF BibTeX XML Cite \textit{E. N. Mahmudov}, J. Convex Anal. 25, No. 1, 293--318 (2018; Zbl 1386.49027) Full Text: Link OpenURL
Zhang, Jianke; Yin, Luyang; Zhou, Chang Fractional Herglotz variational problems with Atangana-Baleanu fractional derivatives. (English) Zbl 1382.26006 J. Inequal. Appl. 2018, Paper No. 44, 16 p. (2018). MSC: 26A33 34A08 49K05 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Inequal. Appl. 2018, Paper No. 44, 16 p. (2018; Zbl 1382.26006) Full Text: DOI OpenURL
Almeida, Ricardo Optimality conditions for fractional variational problems with free terminal time. (English) Zbl 1379.49014 Discrete Contin. Dyn. Syst., Ser. S 11, No. 1, 1-19 (2018). MSC: 49K05 26A33 34A08 PDF BibTeX XML Cite \textit{R. Almeida}, Discrete Contin. Dyn. Syst., Ser. S 11, No. 1, 1--19 (2018; Zbl 1379.49014) Full Text: DOI arXiv OpenURL
Blaszczyk, Tomasz; Ciesielski, Mariusz Numerical solution of Euler-Lagrange equation with Caputo derivatives. (English) Zbl 07407121 Adv. Appl. Math. Mech. 9, No. 1, 173-185 (2017). MSC: 65-XX 26A33 34A08 65R20 70H03 PDF BibTeX XML Cite \textit{T. Blaszczyk} and \textit{M. Ciesielski}, Adv. Appl. Math. Mech. 9, No. 1, 173--185 (2017; Zbl 07407121) Full Text: DOI OpenURL
Abdeljawad, Thabet; Baleanu, Dumitru Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. (English) Zbl 1412.47086 J. Nonlinear Sci. Appl. 10, No. 3, 1098-1107 (2017). MSC: 26A33 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{D. Baleanu}, J. Nonlinear Sci. Appl. 10, No. 3, 1098--1107 (2017; Zbl 1412.47086) Full Text: DOI arXiv OpenURL
Wang, Yanxin; Zhu, Li Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. (English) Zbl 1422.45001 Adv. Difference Equ. 2017, Paper No. 27, 16 p. (2017). MSC: 45D05 26A33 42C40 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{L. Zhu}, Adv. Difference Equ. 2017, Paper No. 27, 16 p. (2017; Zbl 1422.45001) Full Text: DOI OpenURL
Baleanu, Dumitru; Jajarmi, Amin; Hajipour, Mojtaba A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. (English) Zbl 1383.49030 J. Optim. Theory Appl. 175, No. 3, 718-737 (2017). MSC: 49K15 49J40 49M30 26A33 33E12 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Optim. Theory Appl. 175, No. 3, 718--737 (2017; Zbl 1383.49030) Full Text: DOI OpenURL
Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan Global regularity for several incompressible fluid models with partial dissipation. (English) Zbl 1379.35255 J. Math. Fluid Mech. 19, No. 3, 423-444 (2017). MSC: 35Q35 35B45 35B65 76D03 76D09 35Q31 86A05 26A33 PDF BibTeX XML Cite \textit{J. Wu} et al., J. Math. Fluid Mech. 19, No. 3, 423--444 (2017; Zbl 1379.35255) Full Text: DOI OpenURL
Garra, Roberto; Taverna, Giorgio S.; Torres, Delfim F. M. Fractional Herglotz variational principles with generalized Caputo derivatives. (English) Zbl 1374.49039 Chaos Solitons Fractals 102, 94-98 (2017). MSC: 49S05 49K05 34K37 34K11 34A08 26A33 PDF BibTeX XML Cite \textit{R. Garra} et al., Chaos Solitons Fractals 102, 94--98 (2017; Zbl 1374.49039) Full Text: DOI arXiv Link OpenURL
Sweilam, N. H.; Saad, O. M.; Mohamed, D. G. Comparative studies for the fractional optimal control in transmission dynamics of west nile virus. (English) Zbl 1377.37119 Int. J. Biomath. 10, No. 7, Article ID 1750095, 31 p. (2017). MSC: 37N25 49J15 26A33 92D30 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Int. J. Biomath. 10, No. 7, Article ID 1750095, 31 p. (2017; Zbl 1377.37119) Full Text: DOI OpenURL
Mophou, Gisèle Optimal control for fractional diffusion equations with incomplete data. (English) Zbl 1391.49044 J. Optim. Theory Appl. 174, No. 1, 176-196 (2017). Reviewer: Aygul Manapova (Ufa) MSC: 49K20 49J20 26A33 PDF BibTeX XML Cite \textit{G. Mophou}, J. Optim. Theory Appl. 174, No. 1, 176--196 (2017; Zbl 1391.49044) Full Text: DOI OpenURL
Srivastava, H. M.; Kucukoğlu, Irem; Simsek, Yilmaz Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials. (English) Zbl 1369.05009 J. Number Theory 181, 117-146 (2017). MSC: 05A10 05A15 11B37 11B39 11B68 11B83 11M35 26C05 26C10 33C05 34A99 35A99 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Number Theory 181, 117--146 (2017; Zbl 1369.05009) Full Text: DOI OpenURL
Ding, Jiu; Komornik, Vilmos; Schröder, Bernd S. W. Generalizing a Caccioppoli-type inequality. (English) Zbl 1364.35013 J. Math. Anal. Appl. 448, No. 2, 1369-1377 (2017). MSC: 35A23 26D10 47J40 PDF BibTeX XML Cite \textit{J. Ding} et al., J. Math. Anal. Appl. 448, No. 2, 1369--1377 (2017; Zbl 1364.35013) Full Text: DOI OpenURL
Makino, Tetu An application of the Nash-Moser theorem to the vacuum boundary problem of gaseous stars. (English) Zbl 1368.35184 J. Differ. Equations 262, No. 2, 803-843 (2017). MSC: 35L70 35Q31 35Q85 76N15 83C05 26B10 58C15 PDF BibTeX XML Cite \textit{T. Makino}, J. Differ. Equations 262, No. 2, 803--843 (2017; Zbl 1368.35184) Full Text: DOI arXiv OpenURL
Abd Elal, Leila F.; Sweilam, Nasser H.; Nagy, Abdelhameed M.; Almaghrebi, Yousef S. Computational methods for the fractional optimal control HIV infection. (English) Zbl 07447832 J. Fract. Calc. Appl. 7, No. 2, 121-131 (2016). MSC: 65L05 26A33 92D30 65K10 34A08 PDF BibTeX XML Cite \textit{L. F. Abd Elal} et al., J. Fract. Calc. Appl. 7, No. 2, 121--131 (2016; Zbl 07447832) Full Text: Link OpenURL
Bajpai, U. K.; Gaur, V. K. Euler-Darboux equation associated with exponential function of convolution type-II. (English) Zbl 07399218 South East Asian J. Math. Math. Sci. 12, No. 2, 125-136 (2016). MSC: 35Lxx 26A33 45E05 PDF BibTeX XML Cite \textit{U. K. Bajpai} and \textit{V. K. Gaur}, South East Asian J. Math. Math. Sci. 12, No. 2, 125--136 (2016; Zbl 07399218) Full Text: Link OpenURL
Swielam, Nasser Hassan; Nagy, Abd Elhameed Mohamed; El Sayed, Adel Abd Elaziz Numerical approach for solving space fractional order diffusion equations using shifted Chebyshev polynomials of the fourth kind. (English) Zbl 1438.35442 Turk. J. Math. 40, No. 6, 1283-1297 (2016). MSC: 35R11 26A33 35K05 65M70 PDF BibTeX XML Cite \textit{N. H. Swielam} et al., Turk. J. Math. 40, No. 6, 1283--1297 (2016; Zbl 1438.35442) Full Text: DOI OpenURL
Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. A numerical solution for fractional optimal control problems via Bernoulli polynomials. (English) Zbl 1373.49003 J. Vib. Control 22, No. 18, 3889-3903 (2016). MSC: 49J21 26A33 11B68 PDF BibTeX XML Cite \textit{E. Keshavarz} et al., J. Vib. Control 22, No. 18, 3889--3903 (2016; Zbl 1373.49003) Full Text: DOI OpenURL
Singha, N.; Nahak, C. Calculus of variations with combination of classical and fractional operators. (English) Zbl 1367.26020 Nonlinear Funct. Anal. Appl. 21, No. 4, 647-668 (2016). MSC: 26A33 49K20 49M05 PDF BibTeX XML Cite \textit{N. Singha} and \textit{C. Nahak}, Nonlinear Funct. Anal. Appl. 21, No. 4, 647--668 (2016; Zbl 1367.26020) OpenURL
Soolaki, Javad; Fard, Omid Solaymani; Borzabadi, Akbar Hashemi Generalized Euler-Lagrange equations for fuzzy fractional variational calculus. (English) Zbl 1362.65067 Math. Commun. 21, No. 2, 199-218 (2016). Reviewer: Başak Akteke-Öztürk (Ankara) MSC: 65K10 26A33 49J20 49M25 PDF BibTeX XML Cite \textit{J. Soolaki} et al., Math. Commun. 21, No. 2, 199--218 (2016; Zbl 1362.65067) Full Text: Link OpenURL
Sweilam, N. H.; Al-Mekhlafi, S. M. On the optimal control for fractional multi-strain TB model. (English) Zbl 1353.49029 Optim. Control Appl. Methods 37, No. 6, 1355-1374 (2016). MSC: 49K15 49N90 49M25 49J15 34A08 26A33 92C50 PDF BibTeX XML Cite \textit{N. H. Sweilam} and \textit{S. M. Al-Mekhlafi}, Optim. Control Appl. Methods 37, No. 6, 1355--1374 (2016; Zbl 1353.49029) Full Text: DOI OpenURL
Schelthoff, Christof Analysis 2. 4th edition. (Analysis 2.) (German) Zbl 1349.26004 MATSE-Matik. Aachen: Shaker Verlag (ISBN 978-3-8440-4674-8/pbk). 224 p. (2016). MSC: 26-01 26Bxx 34-01 PDF BibTeX XML Cite \textit{C. Schelthoff}, Analysis 2. 4th edition. Aachen: Shaker Verlag (2016; Zbl 1349.26004) OpenURL
Wu, Jiahong The 2D Boussinesq equations with partial or fractional dissipation. (English) Zbl 1348.35204 Chemin, Jean-Yves (ed.) et al., Lectures on the analysis of nonlinear partial differential equations. Part 4. Somerville, MA: International Press; Beijing: Higher Education Press (ISBN 978-1-57146-317-3/pbk). Morningside Lectures in Mathematics 4, 223-269 (2016). MSC: 35Q35 35-02 76D05 26A33 86A05 86A10 PDF BibTeX XML Cite \textit{J. Wu}, Morningside Lect. Math. 4, 223--269 (2016; Zbl 1348.35204) OpenURL
Hu, Yaozhong; Liu, Yanghui; Nualart, David Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. (English) Zbl 1339.60095 Ann. Appl. Probab. 26, No. 2, 1147-1207 (2016). MSC: 60H35 60H10 60G22 60F25 60F05 60H07 65C30 26A33 PDF BibTeX XML Cite \textit{Y. Hu} et al., Ann. Appl. Probab. 26, No. 2, 1147--1207 (2016; Zbl 1339.60095) Full Text: DOI arXiv Euclid OpenURL
Glushak, A. V.; Pokruchin, O. A. Criterion for the solvability of the Cauchy problem for an abstract Euler-Poisson-Darboux equation. (English. Russian original) Zbl 1345.35069 Differ. Equ. 52, No. 1, 39-57 (2016); translation from Differ. Uravn. 52, No. 1, 41-59 (2016). Reviewer: Valery V. Karachik (Chelyabinsk) MSC: 35Q05 26A33 34K06 PDF BibTeX XML Cite \textit{A. V. Glushak} and \textit{O. A. Pokruchin}, Differ. Equ. 52, No. 1, 39--57 (2016; Zbl 1345.35069); translation from Differ. Uravn. 52, No. 1, 41--59 (2016) Full Text: DOI OpenURL
Domański, Paweł; Langenbruch, Michael Interpolation of holomorphic functions and surjectivity of Taylor coefficient multipliers. (English) Zbl 1336.35115 Adv. Math. 293, 782-855 (2016). MSC: 35G05 46F15 46E10 26E05 44A60 45E10 PDF BibTeX XML Cite \textit{P. Domański} and \textit{M. Langenbruch}, Adv. Math. 293, 782--855 (2016; Zbl 1336.35115) Full Text: DOI OpenURL
Ngo, Van Hoa Fuzzy fractional functional integral and differential equations. (English) Zbl 1377.45002 Fuzzy Sets Syst. 280, 58-90 (2015). MSC: 45G10 26A33 34K36 34K37 PDF BibTeX XML Cite \textit{V. H. Ngo}, Fuzzy Sets Syst. 280, 58--90 (2015; Zbl 1377.45002) Full Text: DOI OpenURL
Bahrami, F.; Fazli, H.; Jodayree Akbarfam, A. A new approach on fractional variational problems and Euler-Lagrange equations. (English) Zbl 1351.49020 Commun. Nonlinear Sci. Numer. Simul. 23, No. 1-3, 39-50 (2015). MSC: 49K05 26A33 PDF BibTeX XML Cite \textit{F. Bahrami} et al., Commun. Nonlinear Sci. Numer. Simul. 23, No. 1--3, 39--50 (2015; Zbl 1351.49020) Full Text: DOI OpenURL
Khorshidi, Maryam; Nadjafikhah, Mehdi; Jafari, Hossein Fractional derivative generalization of Noether’s theorem. (English) Zbl 1397.70028 Open Math. 13, 940-947 (2015). MSC: 70H33 70G65 26A33 35R11 49K05 PDF BibTeX XML Cite \textit{M. Khorshidi} et al., Open Math. 13, 940--947 (2015; Zbl 1397.70028) Full Text: DOI OpenURL
da Veiga, Hugo Beirão On some regularity results for the stationary Stokes system and the 2-\(D\) Euler equations. (English) Zbl 1348.35179 Port. Math. (N.S.) 72, No. 2-3, 285-307 (2015). MSC: 35Q31 26B30 26B35 35A09 35B65 35J25 35Q30 76D07 PDF BibTeX XML Cite \textit{H. B. da Veiga}, Port. Math. (N.S.) 72, No. 2--3, 285--307 (2015; Zbl 1348.35179) Full Text: DOI OpenURL
Domański, Paweł; Langenbruch, Michael; Vogt, Dietmar Hadamard type operators on spaces of real analytic functions in several variables. (English) Zbl 1341.46016 J. Funct. Anal. 269, No. 12, 3868-3913 (2015). Reviewer: Krzysztof Piszczek (Poznan) MSC: 46E10 46F15 35G05 26E05 44A60 44A35 45E10 35R50 31B05 PDF BibTeX XML Cite \textit{P. Domański} et al., J. Funct. Anal. 269, No. 12, 3868--3913 (2015; Zbl 1341.46016) Full Text: DOI OpenURL
Taverna, Giorgio S.; Torres, Delfim F. M. Generalized fractional operators for nonstandard Lagrangians. (English) Zbl 1322.49040 Math. Methods Appl. Sci. 38, No. 9, 1808-1812 (2015). MSC: 49K21 26A33 PDF BibTeX XML Cite \textit{G. S. Taverna} and \textit{D. F. M. Torres}, Math. Methods Appl. Sci. 38, No. 9, 1808--1812 (2015; Zbl 1322.49040) Full Text: DOI arXiv OpenURL
Almeida, Ricardo; Martins, Natália Variational problems for Hölderian functions with free terminal point. (English) Zbl 1309.39006 Math. Methods Appl. Sci. 38, No. 6, 1059-1069 (2015). MSC: 39A13 49K05 49S05 26A27 26B20 49K10 PDF BibTeX XML Cite \textit{R. Almeida} and \textit{N. Martins}, Math. Methods Appl. Sci. 38, No. 6, 1059--1069 (2015; Zbl 1309.39006) Full Text: DOI arXiv OpenURL
Kriegl, Andreas; Michor, W Peter.; Rainer, Armin An exotic zoo of diffeomorphism groups on \(\mathbb {R}^n\). (English) Zbl 1316.58008 Ann. Global Anal. Geom. 47, No. 2, 179-222 (2015). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 58D15 58D05 26E10 46A17 46E50 46F05 58B10 58B25 58C25 35Q31 PDF BibTeX XML Cite \textit{A. Kriegl} et al., Ann. Global Anal. Geom. 47, No. 2, 179--222 (2015; Zbl 1316.58008) Full Text: DOI arXiv OpenURL
Zhang, Youwei Formulation and solution to time-fractional generalized Korteweg-de Vries equation via variational methods. (English) Zbl 1444.35158 Adv. Difference Equ. 2014, Paper No. 65, 12 p. (2014). MSC: 35R11 35Q53 26A33 PDF BibTeX XML Cite \textit{Y. Zhang}, Adv. Difference Equ. 2014, Paper No. 65, 12 p. (2014; Zbl 1444.35158) Full Text: DOI OpenURL
Qi, Feng; Zheng, Miao-Miao Absolute monotonicity of functions related to estimates of first eigenvalue of Laplace operator on Riemannian manifolds. (English) Zbl 1399.26020 Int. J. Anal. Appl. 6, No. 2, 123-131 (2014). MSC: 26A48 33B10 11B68 34A05 PDF BibTeX XML Cite \textit{F. Qi} and \textit{M.-M. Zheng}, Int. J. Anal. Appl. 6, No. 2, 123--131 (2014; Zbl 1399.26020) Full Text: Link OpenURL
Dryl, Monika; Torres, Delfim F. M. A general delta-nabla calculus of variations on time scales with application to economics. (English) Zbl 1331.49032 Int. J. Dyn. Syst. Differ. Equ. 5, No. 1, 42-71 (2014). MSC: 49K21 26E70 91B38 PDF BibTeX XML Cite \textit{M. Dryl} and \textit{D. F. M. Torres}, Int. J. Dyn. Syst. Differ. Equ. 5, No. 1, 42--71 (2014; Zbl 1331.49032) Full Text: DOI arXiv OpenURL
Pu, Yifei; Siarry, Patrick; Zhou, Jiliu; Liu, Yiguang; Zhang, Ni; Huang, Guo; Liu, Yizhi Fractional partial differential equation denoising models for texture image. (English) Zbl 1343.94012 Sci. China, Inf. Sci. 57, No. 7, Article ID 072115, 19 p. (2014). MSC: 94A08 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Pu} et al., Sci. China, Inf. Sci. 57, No. 7, Article ID 072115, 19 p. (2014; Zbl 1343.94012) Full Text: DOI Link OpenURL
Fard, Omid S.; Salehi, Maryam A survey on fuzzy fractional variational problems. (English) Zbl 1326.49037 J. Comput. Appl. Math. 271, 71-82 (2014). MSC: 49K21 49Q10 26E50 26A33 35R13 35R11 34A07 34A08 PDF BibTeX XML Cite \textit{O. S. Fard} and \textit{M. Salehi}, J. Comput. Appl. Math. 271, 71--82 (2014; Zbl 1326.49037) Full Text: DOI OpenURL
Bai, Dingyong Du Bois-Reymond lemma of fractional derivatives and its applications in fractional variational problems. (English) Zbl 1324.49001 J. Guangzhou Univ., Nat. Sci. 13, No. 4, 1-10 (2014). MSC: 49J15 49K15 26A33 PDF BibTeX XML Cite \textit{D. Bai}, J. Guangzhou Univ., Nat. Sci. 13, No. 4, 1--10 (2014; Zbl 1324.49001) OpenURL
Kisel’ák, Jozef The best constant of Sobolev inequality corresponding to anti-periodic boundary value problem. (English) Zbl 1324.46046 Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 62, 11 p. (2014). MSC: 46E35 41A44 26D10 34B27 PDF BibTeX XML Cite \textit{J. Kisel'ák}, Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 62, 11 p. (2014; Zbl 1324.46046) Full Text: DOI Link OpenURL
Mortici, Cristinel Methods and algorithms for approximating the gamma functions and related functions. A survey. I: Asymptotic series. (English) Zbl 1305.33004 Ann. Acad. Rom. Sci., Math. Appl. 6, No. 2, 173-188 (2014). MSC: 33B15 26D15 11Y60 41A60 41A25 34E05 PDF BibTeX XML Cite \textit{C. Mortici}, Ann. Acad. Rom. Sci., Math. Appl. 6, No. 2, 173--188 (2014; Zbl 1305.33004) Full Text: Link OpenURL