×

Quasi wavelet based numerical method for a class of partial integro-differential equation. (English) Zbl 1278.65199

Summary: In this paper we study the numerical solution of initial-boundary problem for a class of partial integro-differential equations. The quasi wavelet method is proposed to handle the spatial derivatives while the forward Euler method is used to discretize the temporal derivatives. Detailed discrete schemes are given and some numerical experiments are included to demonstrate the effectiveness of the discrete technique. The comparisons of the present numerical results with the exact analytical solutions show that the quasi wavelet based numerical method has distinctive local property and can achieve accurate results.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, C.; Thomée, V.; Wahlbin, L., Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comput., 58, 587-602 (1992) · Zbl 0766.65120
[2] McLean, W.; Thomée, V., Numerical solution of an evolution equation with a positive-type memory term, J. Aust. Math. Soc. Ser. B, 35, 23-70 (1993) · Zbl 0791.65105
[3] Sloan, I.; Thomée, V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 1052-1061 (1986) · Zbl 0608.65096
[4] Larsson, S.; Thomée, V.; Wahlbin, L., Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comput., 67, 45-71 (1998) · Zbl 0896.65090
[5] McLean, W.; Thomée, V.; Wahlbin, L., Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math., 69, 49-69 (1996) · Zbl 0858.65143
[6] Lubich, C., Discretized fractional calculus, SIAM J. Math. Anal., 17, 704 (1986) · Zbl 0624.65015
[7] Yanik, E.; Fairweather, G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Non-Linear Anal., 12, 809 (1988) · Zbl 0657.65142
[8] Huang, Y., Time discretization scheme for an integro-differential equation of parabolic type, J. Comput. Math., 12, 259-263 (1994)
[9] Xu, D., The long-time global behavior of time discretization for fractional order Volterra equations, Calcolo, 35, 93-116 (1998) · Zbl 0917.65113
[10] Xu, D., The global behavior of time discretization for an abstract Volterra equation in Hilbert space, Calcolo, 34, 71-104 (1997) · Zbl 0913.65138
[11] Xu, D., Non-smooth initial data error estimates with the weight norms for the linear finite element method of parabolic partial differential equations, Appl. Math. Comput., 54, 1-24 (1993) · Zbl 0766.65084
[12] Xu, D., On the discretization in time for a parabolic integrodifferential equation with a weakly singular kernel I: smooth initial data, Appl. Math. Comput., 57, 29-60 (1993) · Zbl 0782.65161
[13] Xu, D., On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel II: nonsmooth initial data, Appl. Math. Comput., 57, 1-27 (1993)
[14] Tang, T., Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations, Numer. Math., 61, 373-382 (1992) · Zbl 0741.65110
[15] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083
[16] Bialecki, B.; Fairweather, G., Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., 128, 55-82 (2001) · Zbl 0971.65105
[17] Fairweather, G., Spline collocation methods for a class of hyperbolic partial integro-differential equations, SIAM J. Numer. Anal., 444-460 (1994) · Zbl 0814.65137
[18] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[19] Lin, T.; Lin, Y.; Rao, M.; Zhang, S., Petrov-Galerkin methods for linear Volterra integro-differential equations, SIAM J. Numer. Anal., 937-963 (2001) · Zbl 0983.65138
[20] Mallat, S., Multiresolution approximations and wavelet orthonormal bases of \(L^2(R)\), Trans. Amer. Math. Soc., 315, 69-87 (1989) · Zbl 0686.42018
[21] Wei, G., Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett., 296, 215-222 (1998)
[22] Wei, G., Wavelets generated by using discrete singular convolution kernels, J. Phys. A: Math. Gen., 33, 8577 (2000) · Zbl 0961.42019
[23] Wei, G.; Zhao, Y.; Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports part 1: theory and algorithm, Int. J. Numer. Methods Eng., 55, 913-946 (2002) · Zbl 1058.74643
[24] Wei, G.; Zhang, D.; Kouri, D.; Hoffman, D., Lagrange distributed approximating functionals, Phys. Rev. Lett., 79, 775-779 (1997)
[25] Wang, D.; Wei, G., The study of quasi wavelets based numerical method applied to Burgers’ equations, Appl. Math. Mech., 21, 1099-1110 (2000) · Zbl 1003.76070
[26] Qian, L., On the regularized Whittaker-Kotel’nikov-Shannon sampling formula, Proc. Amer. Math. Soc., 131, 1169-1176 (2003) · Zbl 1018.94004
[27] Qian, L.; Wei, G., A note on regularized Shannon sampling formulae, J. Approx. Theory (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.