Feng, Yue-Hong; Li, Xin; Wang, Shu The global convergence of non-isentropic Euler-Maxwell equations via infinity-ion-mass limit. (English) Zbl 1464.35221 Z. Angew. Math. Phys. 72, No. 1, Paper No. 28, 28 p. (2021). MSC: 35Q35 35Q60 76X05 35B65 35C20 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 28, 28 p. (2021; Zbl 1464.35221) Full Text: DOI OpenURL
Feng, Yuehong; Li, Xin; Wang, Shu Global zero-relaxation limit of the non-isentropic Euler-Poisson system for ion dynamics. (English) Zbl 1472.35380 Asymptotic Anal. 120, No. 3, 301-318 (2020). MSC: 35Q81 35Q31 35Q60 35B65 35A01 PDF BibTeX XML Cite \textit{Y. Feng} et al., Asymptotic Anal. 120, No. 3, 301--318 (2020; Zbl 1472.35380) Full Text: DOI OpenURL
Li, Min; Pu, Xueke; Wang, Shu Quasineutral limit for the compressible two-fluid Euler-Maxwell equations for well-prepared initial data. (English) Zbl 1446.35129 Electron Res. Arch. 28, No. 2, 879-895 (2020). MSC: 35Q35 35L60 35B40 35C20 76W05 76N10 35B25 35A01 PDF BibTeX XML Cite \textit{M. Li} et al., Electron Res. Arch. 28, No. 2, 879--895 (2020; Zbl 1446.35129) Full Text: DOI OpenURL
Wang, Shu The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates. (English) Zbl 1440.35246 Appl. Math. Lett. 103, Article ID 106195, 6 p. (2020). MSC: 35Q30 35Q31 76D05 35B65 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{S. Wang}, Appl. Math. Lett. 103, Article ID 106195, 6 p. (2020; Zbl 1440.35246) Full Text: DOI OpenURL
Luo, Tao; Wang, Shu; Wang, Yan-Lin Initial layer and incompressible limit for Euler-Poisson equation in nonthermal plasma. (English) Zbl 1425.76319 Math. Models Methods Appl. Sci. 29, No. 9, 1733-1751 (2019). MSC: 76X05 35Q35 35B40 76N10 35Q31 PDF BibTeX XML Cite \textit{T. Luo} et al., Math. Models Methods Appl. Sci. 29, No. 9, 1733--1751 (2019; Zbl 1425.76319) Full Text: DOI OpenURL
Li, Xin; Wang, Shu; Feng, Yuehong Stability of nonconstant steady-state solutions for 2-fluid nonisentropic Euler-Poisson equations in semiconductor. (English) Zbl 1394.35268 Math. Methods Appl. Sci. 41, No. 10, 3588-3604 (2018). MSC: 35L45 35L60 35L65 35Q60 76X05 PDF BibTeX XML Cite \textit{X. Li} et al., Math. Methods Appl. Sci. 41, No. 10, 3588--3604 (2018; Zbl 1394.35268) Full Text: DOI OpenURL
Wang, Shu; Liu, Chundi Boundary layer problem and quasineutral limit of compressible Euler-Poisson system. (English) Zbl 1372.35023 Commun. Pure Appl. Anal. 16, No. 6, 2177-2199 (2017). MSC: 35B25 35B40 35K57 PDF BibTeX XML Cite \textit{S. Wang} and \textit{C. Liu}, Commun. Pure Appl. Anal. 16, No. 6, 2177--2199 (2017; Zbl 1372.35023) Full Text: DOI OpenURL
Feng, Yuehong; Wang, Shu Stability of non-constant steady state solutions for non-isentropic Euler-Poisson system in semiconductors. (Chinese. English summary) Zbl 07494360 Sci. Sin., Math. 46, No. 11, 1675-1690 (2016). MSC: 35B35 35Q05 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{S. Wang}, Sci. Sin., Math. 46, No. 11, 1675--1690 (2016; Zbl 07494360) Full Text: DOI OpenURL
Li, Xin; Wang, Shu; Feng, Yuehong Stability of non-constant equilibrium solutions for bipolar non-isentropic Euler-Poisson equations. (Chinese. English summary) Zbl 1374.35396 Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 5, 978-996 (2016). MSC: 35Q60 35B35 35M31 78A25 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 5, 978--996 (2016; Zbl 1374.35396) OpenURL
Feng, Yue-Hong; Wang, Shu; Li, Xin Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term. (English) Zbl 1348.35134 Math. Methods Appl. Sci. 39, No. 10, 2514-2528 (2016). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L45 35L60 82D10 35Q31 35Q61 35B35 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Math. Methods Appl. Sci. 39, No. 10, 2514--2528 (2016; Zbl 1348.35134) Full Text: DOI OpenURL
Feng, Yue-Hong; Peng, Yue-Jun; Wang, Shu Stability of non-constant equilibrium solutions for two-fluid Euler-Maxwell systems. (English) Zbl 1330.35038 Nonlinear Anal., Real World Appl. 26, 372-390 (2015). MSC: 35B40 35B35 35Q31 35Q61 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Nonlinear Anal., Real World Appl. 26, 372--390 (2015; Zbl 1330.35038) Full Text: DOI OpenURL
Wang, Shu; Feng, Yue-Hong; Li, Xin The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas. (English) Zbl 1410.82029 Appl. Math. Comput. 231, 299-306 (2014). MSC: 82D10 35Q31 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Comput. 231, 299--306 (2014; Zbl 1410.82029) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations. (English) Zbl 1371.76165 J. Math. Anal. Appl. 417, No. 2, 889-903 (2014). MSC: 76W05 76N99 76X05 PDF BibTeX XML Cite \textit{J. Yang} and \textit{S. Wang}, J. Math. Anal. Appl. 417, No. 2, 889--903 (2014; Zbl 1371.76165) Full Text: DOI OpenURL
Feng, Yue-Hong; Wang, Shu; Kawashima, Shuichi Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system. (English) Zbl 1304.35517 Math. Models Methods Appl. Sci. 24, No. 14, 2851 (2014). MSC: 35Q31 35A01 35L45 35L60 35Q35 35B65 35Q61 35B40 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Math. Models Methods Appl. Sci. 24, No. 14, 2851 (2014; Zbl 1304.35517) Full Text: DOI arXiv OpenURL
Hou, Thomas Y.; Lei, Zhen; Luo, Guo; Wang, Shu; Zou, Chen On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations. (English) Zbl 1293.35228 Arch. Ration. Mech. Anal. 212, No. 2, 683-706 (2014). MSC: 35Q31 35B44 76D05 35Q30 35B65 PDF BibTeX XML Cite \textit{T. Y. Hou} et al., Arch. Ration. Mech. Anal. 212, No. 2, 683--706 (2014; Zbl 1293.35228) Full Text: DOI arXiv Link OpenURL
Wang, Shu; Feng, Yuehong; Li, Xin Global existence and decay of solutions for the bipolar Euler-Maxwell system in the torus. (Chinese. English summary) Zbl 1299.35297 J. Beijing Univ. Technol. 39, No. 9, 1434-1440 (2013). MSC: 35Q61 35A01 82D10 PDF BibTeX XML Cite \textit{S. Wang} et al., J. Beijing Univ. Technol. 39, No. 9, 1434--1440 (2013; Zbl 1299.35297) OpenURL
Yang, Jianwei; Wang, Shu; Wang, Fuqiang Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations. (English) Zbl 1273.76452 Appl. Math. Comput. 219, No. 11, 6142-6151 (2013). MSC: 76X05 35Q35 PDF BibTeX XML Cite \textit{J. Yang} et al., Appl. Math. Comput. 219, No. 11, 6142--6151 (2013; Zbl 1273.76452) Full Text: DOI OpenURL
Yang, Jianwei; Lian, Ruxu; Wang, Shu Incompressible type Euler as scaling limit of compressible Euler-Maxwell equations. (English) Zbl 1264.35247 Commun. Pure Appl. Anal. 12, No. 1, 503-518 (2013). MSC: 35Q61 35Q31 35B40 35C20 35L60 PDF BibTeX XML Cite \textit{J. Yang} et al., Commun. Pure Appl. Anal. 12, No. 1, 503--518 (2013; Zbl 1264.35247) Full Text: DOI OpenURL
Wang, Shu; Feng, Yuehong; Li, Xin Existence of the global smooth solutions to the periodic problem of bipolar Euler-Maxwell system on the torus. (Chinese. English summary) Zbl 1289.35213 Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 6, 1041-1049 (2012). MSC: 35L45 35A01 35L60 82D10 PDF BibTeX XML Cite \textit{S. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 6, 1041--1049 (2012; Zbl 1289.35213) OpenURL
Yang, Jianwei; Wang, Shu An asymptotic expansion in the multi-dimensional hydrodynamic model for two-carrier plasmas with small parameters. (English) Zbl 1274.35263 Adv. Math., Beijing 41, No. 1, 91-101 (2012). MSC: 35Q05 35B40 35C20 PDF BibTeX XML Cite \textit{J. Yang} and \textit{S. Wang}, Adv. Math., Beijing 41, No. 1, 91--101 (2012; Zbl 1274.35263) OpenURL
Wang, Shu; Feng, Yuehong; Li, Xin The asymptotic behavior of globally smooth solutions of bipolar nonisentropic compressible Euler-Maxwell system for plasma. (English) Zbl 1296.35134 SIAM J. Math. Anal. 44, No. 5, 3429-3457 (2012). Reviewer: Song Jiang (Beijing) MSC: 35Q31 35A01 35L45 35L60 35Q35 82D10 35Q61 35B65 35B40 PDF BibTeX XML Cite \textit{S. Wang} et al., SIAM J. Math. Anal. 44, No. 5, 3429--3457 (2012; Zbl 1296.35134) Full Text: DOI arXiv OpenURL
Ueda, Yoshihiro; Wang, Shu; Kawashima, Shuichi Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler-Maxwell system. (English) Zbl 1252.35073 SIAM J. Math. Anal. 44, No. 3, 2002-2017 (2012). MSC: 35B40 35B35 35L40 82D10 35Q31 35Q61 PDF BibTeX XML Cite \textit{Y. Ueda} et al., SIAM J. Math. Anal. 44, No. 3, 2002--2017 (2012; Zbl 1252.35073) Full Text: DOI Link OpenURL
Wang, Shu; Yang, Jianwei; Wang, Wei The relaxation limit of bipolar Euler-Maxwell equations arising from plasma. (Chinese. English summary) Zbl 1265.35342 Acta Math. Sci., Ser. A, Chin. Ed. 31, No. 6, 1543-1549 (2011). MSC: 35Q61 35B40 35C20 PDF BibTeX XML Cite \textit{S. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 31, No. 6, 1543--1549 (2011; Zbl 1265.35342) OpenURL
Yang, Jianwei; Wang, Shu; Zhao, Juan The relaxation-time limit in the compressible Euler-Maxwell equations. (English) Zbl 1231.35040 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7005-7011 (2011). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35C20 35B40 35Q31 35Q61 35B25 82D10 35L60 35Q35 PDF BibTeX XML Cite \textit{J. Yang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7005--7011 (2011; Zbl 1231.35040) Full Text: DOI OpenURL
Peng, Yue-Jun; Wang, Shu; Gu, Qilong Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations. (English) Zbl 1231.35039 SIAM J. Math. Anal. 43, No. 2, 944-970 (2011). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35C20 35B40 35B10 35B25 35L60 35Q35 PDF BibTeX XML Cite \textit{Y.-J. Peng} et al., SIAM J. Math. Anal. 43, No. 2, 944--970 (2011; Zbl 1231.35039) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu; Li, Yong; Luo, Dang The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas. (English) Zbl 1214.35054 J. Math. Anal. Appl. 380, No. 1, 343-353 (2011). MSC: 35Q35 76X05 PDF BibTeX XML Cite \textit{J. Yang} et al., J. Math. Anal. Appl. 380, No. 1, 343--353 (2011; Zbl 1214.35054) Full Text: DOI OpenURL
Wang, Shu On a new 3D model for incompressible Euler and Navier-Stokes equations. (English) Zbl 1240.35393 Acta Math. Sci., Ser. B, Engl. Ed. 30, No. 6, 2089-2102 (2010). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{S. Wang}, Acta Math. Sci., Ser. B, Engl. Ed. 30, No. 6, 2089--2102 (2010; Zbl 1240.35393) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Hongli; Wang, Shu The convergence of Euler-Poisson system to incompressible Euler type equations. (English) Zbl 1240.35377 J. Sichuan Norm. Univ., Nat. Sci. 33, No. 3, 331-334 (2010). MSC: 35Q05 35Q31 35B41 PDF BibTeX XML Cite \textit{J. Yang} et al., J. Sichuan Norm. Univ., Nat. Sci. 33, No. 3, 331--334 (2010; Zbl 1240.35377) Full Text: DOI OpenURL
Wang, Shu; Wang, Ke; Yang, Jianwei The convergence of Euler-Poisson system to the incompressible Euler equations. (English) Zbl 1218.35169 Li, Tatsien (ed.) et al., Some problems on nonlinear hyperbolic equations and applications. Hackensack, NJ: World Scientific; Beijing: Higher Education Press (ISBN 978-981-4322-88-1/hbk). Series in Contemporary Applied Mathematics CAM 15, 225-257 (2010). MSC: 35Q31 76X05 35A35 PDF BibTeX XML Cite \textit{S. Wang} et al., Ser. Contemp. Appl. Math. CAM 15, 225--257 (2010; Zbl 1218.35169) OpenURL
Yang, Jianwei; Wang, Shu; Shi, Qihong The non-relativistic limit of bipolar Euler-Maxwell equations for plasma physics. (Chinese. English summary) Zbl 1224.35307 Math. Appl. 23, No. 1, 179-184 (2010). MSC: 35Q05 35Q61 PDF BibTeX XML Cite \textit{J. Yang} et al., Math. Appl. 23, No. 1, 179--184 (2010; Zbl 1224.35307) OpenURL
Yang, Jianwei; Wang, Shu; Li, Yong; Luo, Dang Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations. (English) Zbl 1206.35210 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 11, 3613-3625 (2010). Reviewer: Adrian Carabineanu (Bucureşti) MSC: 35Q35 35B40 35C20 35L60 76W05 76M45 PDF BibTeX XML Cite \textit{J. Yang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 11, 3613--3625 (2010; Zbl 1206.35210) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu; Li, Yong Local smooth solution and non-relativistic limit of radiation hydrodynamics equations. (English) Zbl 1207.35253 Bound. Value Probl. 2010, Article ID 716451, 15 p. (2010). MSC: 35Q35 76W05 35B65 76M45 35C20 35B45 PDF BibTeX XML Cite \textit{J. Yang} et al., Bound. Value Probl. 2010, Article ID 716451, 15 p. (2010; Zbl 1207.35253) Full Text: DOI EuDML OpenURL
Wang, Shu; Yang, Jianwei; Luo, Dang Convergence of compressible Euler-Poisson system to incompressible Euler equations. (English) Zbl 1425.35165 Appl. Math. Comput. 216, No. 11, 3408-3418 (2010). MSC: 35Q35 35Q31 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Comput. 216, No. 11, 3408--3418 (2010; Zbl 1425.35165) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma. (English) Zbl 1184.35265 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 3-4, 1829-1840 (2010). MSC: 35Q35 35C20 35B40 76Y05 76X05 PDF BibTeX XML Cite \textit{J. Yang} and \textit{S. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 3--4, 1829--1840 (2010; Zbl 1184.35265) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations. (English) Zbl 1373.35260 J. Math. Phys. 50, No. 12, 123508, 15 p. (2009). MSC: 35Q35 35Q31 PDF BibTeX XML Cite \textit{J. Yang} and \textit{S. Wang}, J. Math. Phys. 50, No. 12, 123508, 15 p. (2009; Zbl 1373.35260) Full Text: DOI OpenURL
Yang, Jianwei; Wang, Shu Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics. (English) Zbl 1180.35422 ZAMM, Z. Angew. Math. Mech. 89, No. 12, 981-994 (2009). MSC: 35Q31 35Q61 35B40 35C20 76X05 76Y05 PDF BibTeX XML Cite \textit{J. Yang} and \textit{S. Wang}, ZAMM, Z. Angew. Math. Mech. 89, No. 12, 981--994 (2009; Zbl 1180.35422) Full Text: DOI OpenURL
Ju, Qiangchang; Li, Yong; Wang, Shu Rate of convergence from the Navier-Stokes-Poisson system to the incompressible Euler equations. (English) Zbl 1200.76044 J. Math. Phys. 50, No. 1, 013533, 12 p. (2009). MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{Q. Ju} et al., J. Math. Phys. 50, No. 1, 013533, 12 p. (2009; Zbl 1200.76044) Full Text: DOI OpenURL
Peng, Yue-Jun; Wang, Shu Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. (English) Zbl 1369.35088 Discrete Contin. Dyn. Syst. 23, No. 1-2, 415-433 (2009). MSC: 35Q60 35C20 76W05 76X05 82D10 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{S. Wang}, Discrete Contin. Dyn. Syst. 23, No. 1--2, 415--433 (2009; Zbl 1369.35088) Full Text: DOI OpenURL
Peng, Yue-Jun; Wang, Shu Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations. (English) Zbl 1170.35081 SIAM J. Math. Anal. 40, No. 2, 540-565 (2008). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35Q35 35B40 76W05 35C20 35L60 35B45 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{S. Wang}, SIAM J. Math. Anal. 40, No. 2, 540--565 (2008; Zbl 1170.35081) Full Text: DOI OpenURL
Hsiao, L.; Li, F.; Wang, S. Monokinetic limits of the Vlasov-Poisson/Maxwell-Fokker-Planck system. (English) Zbl 1168.35418 Benzoni-Gavage, Sylvie (ed.) et al., Hyperbolic problems. Theory, numerics and applications. Proceedings of the 11th international conference on hyperbolic problems, Ecole Normale Supérieure, Lyon, France, July 17–21, 2006. Berlin: Springer (ISBN 978-3-540-75711-5/hbk). 533-540 (2008). MSC: 35Q35 82D10 76W05 PDF BibTeX XML Cite \textit{L. Hsiao} et al., in: Hyperbolic problems. Theory, numerics and applications. Proceedings of the 11th international conference on hyperbolic problems, Ecole Normale Supérieure, Lyon, France, July 17--21, 2006. Berlin: Springer. 533--540 (2008; Zbl 1168.35418) OpenURL
Peng, Yuejun; Wang, Shu Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations. (English) Zbl 1145.35347 Chin. Ann. Math., Ser. B 28, No. 5, 583-602 (2007). MSC: 35B40 35C20 35L60 35Q35 35Q60 PDF BibTeX XML Cite \textit{Y. Peng} and \textit{S. Wang}, Chin. Ann. Math., Ser. B 28, No. 5, 583--602 (2007; Zbl 1145.35347) Full Text: DOI OpenURL
Wang, Shu; Jiang, Song The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. (English) Zbl 1137.35416 Commun. Partial Differ. Equations 31, No. 4-6, 571-591 (2006). Reviewer: Georg V. Jaiani (Tbilisi) MSC: 35Q31 35Q05 76X05 PDF BibTeX XML Cite \textit{S. Wang} and \textit{S. Jiang}, Commun. Partial Differ. Equations 31, No. 4--6, 571--591 (2006; Zbl 1137.35416) Full Text: DOI OpenURL
Hsiao, Ling; Ju, Qiangchang; Wang, Shu The global existence and large time behavior of solutions to the multidimensional Euler-Poisson equations. (English) Zbl 1134.82337 Hou, Thomas Y. (ed.) et al., Hyperbolic problems: Theory, numerics, applications. Proceedings of the ninth international conference on hyperbolic problems, Pasadena, CA, USA, March 25–29, 2002. Berlin: Springer (ISBN 3-540-44333-9/hbk). 599-609 (2003). Reviewer: Luigi Barletti (Firenze) MSC: 82D37 35Q35 76X05 PDF BibTeX XML Cite \textit{L. Hsiao} et al., in: Hyperbolic problems: Theory, numerics, applications. Proceedings of the ninth international conference on hyperbolic problems, Pasadena, CA, USA, March 25--29, 2002. Berlin: Springer. 599--609 (2003; Zbl 1134.82337) OpenURL
Hsiao, Ling; Ju, Qiangchang; Wang, Shu The asymptotic behaviour of global smooth solutions to the multi-dimensional hydrodynamic model for semiconductors. (English) Zbl 1027.35071 Math. Methods Appl. Sci. 26, No. 14, 1187-1210 (2003). Reviewer: Francisco José Pena Brage (Santiago de Compostela) MSC: 35L65 76X05 35L70 35Q60 82D37 PDF BibTeX XML Cite \textit{L. Hsiao} et al., Math. Methods Appl. Sci. 26, No. 14, 1187--1210 (2003; Zbl 1027.35071) Full Text: DOI OpenURL
Wang, Wei; Wang, Shu Semi-classical limit of a cubic defocusing nonlinear Schrödinger system. (English) Zbl 1010.35102 Chin. Q. J. Math. 17, No. 3, 18-23 (2002). MSC: 35Q55 81Q20 PDF BibTeX XML Cite \textit{W. Wang} and \textit{S. Wang}, Chin. Q. J. Math. 17, No. 3, 18--23 (2002; Zbl 1010.35102) OpenURL