Kukavica, Igor; Nguyen, Trinh T.; Vicol, Vlad; Wang, Fei On the Euler\(+\)Prandtl expansion for the Navier-Stokes equations. (English) Zbl 07514298 J. Math. Fluid Mech. 24, No. 2, Paper No. 47, 46 p. (2022). MSC: 76-XX PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Math. Fluid Mech. 24, No. 2, Paper No. 47, 46 p. (2022; Zbl 07514298) Full Text: DOI OpenURL
Kukavica, Igor; Vicol, Vlad; Wang, Fei Remarks on the inviscid limit problem for the Navier-Stokes equations. (English) Zbl 1483.35153 Pure Appl. Funct. Anal. 7, No. 1, 283-306 (2022). MSC: 35Q30 35Q31 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Pure Appl. Funct. Anal. 7, No. 1, 283--306 (2022; Zbl 1483.35153) Full Text: Link OpenURL
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 1461.35186 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 1461.35186) Full Text: DOI OpenURL
Buckmaster, Tristan; Vicol, Vlad A heuristic approach to convex integration for the Euler equations. (English) Zbl 1454.35264 Berselli, Luigi C. (ed.) et al., Progress in mathematical fluid dynamics. Cetraro, Italy, June 17–21, 2019. Lecture notes given at the summer school. Cham: Springer. Lect. Notes Math. 2272, 1-14 (2020). MSC: 35Q31 76B03 76D05 76F02 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Lect. Notes Math. 2272, 1--14 (2020; Zbl 1454.35264) Full Text: DOI OpenURL
Kukavica, Igor; Vicol, Vlad; Wang, Fei The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary. (English) Zbl 1437.35539 Arch. Ration. Mech. Anal. 237, No. 2, 779-827 (2020). MSC: 35Q30 35Q31 76D10 76D03 35B65 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Arch. Ration. Mech. Anal. 237, No. 2, 779--827 (2020; Zbl 1437.35539) Full Text: DOI arXiv OpenURL
Buckmaster, Tristan; Vicol, Vlad Convex integration and phenomenologies in turbulence. (English) Zbl 1440.35231 EMS Surv. Math. Sci. 6, No. 1-2, 173-263 (2019). MSC: 35Q30 35Q31 35Q35 76D03 76D05 35D30 76F02 76F06 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, EMS Surv. Math. Sci. 6, No. 1--2, 173--263 (2019; Zbl 1440.35231) Full Text: DOI arXiv Backlinks: MO OpenURL
Constantin, Peter; La, Joonhyun; Vicol, Vlad Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. (English) Zbl 1427.35189 Geom. Funct. Anal. 29, No. 6, 1773-1793 (2019). MSC: 35Q31 35Q92 35B65 76B47 PDF BibTeX XML Cite \textit{P. Constantin} et al., Geom. Funct. Anal. 29, No. 6, 1773--1793 (2019; Zbl 1427.35189) Full Text: DOI arXiv OpenURL
Bedrossian, Jacob; Coti Zelati, Michele; Vicol, Vlad Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. (English) Zbl 1428.35321 Ann. PDE 5, No. 1, Paper No. 4, 192 p. (2019). MSC: 35Q31 35B40 76B47 PDF BibTeX XML Cite \textit{J. Bedrossian} et al., Ann. PDE 5, No. 1, Paper No. 4, 192 p. (2019; Zbl 1428.35321) Full Text: DOI arXiv OpenURL
Constantin, Peter; Filho, Milton C. Lopes; Lopes, Helena J. Nussenzveig; Vicol, Vlad Vorticity measures and the inviscid limit. (English) Zbl 1428.35352 Arch. Ration. Mech. Anal. 234, No. 2, 575-593 (2019). MSC: 35Q35 76B03 76D05 35B65 35D35 PDF BibTeX XML Cite \textit{P. Constantin} et al., Arch. Ration. Mech. Anal. 234, No. 2, 575--593 (2019; Zbl 1428.35352) Full Text: DOI arXiv OpenURL
Buckmaster, Tristan; De Lellis, Camillo; Székelyhidi, László jun.; Vicol, Vlad Onsager’s conjecture for admissible weak solutions. (English) Zbl 1480.35317 Commun. Pure Appl. Math. 72, No. 2, 229-274 (2019). MSC: 35Q31 35D30 76B03 PDF BibTeX XML Cite \textit{T. Buckmaster} et al., Commun. Pure Appl. Math. 72, No. 2, 229--274 (2019; Zbl 1480.35317) Full Text: DOI arXiv Link OpenURL
Buckmaster, Tristan; Vicol, Vlad Nonuniqueness of weak solutions to the Navier-Stokes equation. (English) Zbl 1412.35215 Ann. Math. (2) 189, No. 1, 101-144 (2019). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 35Q31 35Q35 76F02 35D30 76D05 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Ann. Math. (2) 189, No. 1, 101--144 (2019; Zbl 1412.35215) Full Text: DOI arXiv OpenURL
Constantin, Peter; Vicol, Vlad Remarks on high Reynolds numbers hydrodynamics and the inviscid limit. (English) Zbl 1384.35057 J. Nonlinear Sci. 28, No. 2, 711-724 (2018). MSC: 35Q30 35Q31 PDF BibTeX XML Cite \textit{P. Constantin} and \textit{V. Vicol}, J. Nonlinear Sci. 28, No. 2, 711--724 (2018; Zbl 1384.35057) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Tuffaha, Amjad; Vicol, Vlad On the local existence and uniqueness for the 3D Euler equation with a free interface. (English) Zbl 1384.35074 Appl. Math. Optim. 76, No. 3, 535-563 (2017). MSC: 35Q31 35A01 35A02 76U05 76B03 35R35 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Appl. Math. Optim. 76, No. 3, 535--563 (2017; Zbl 1384.35074) Full Text: DOI OpenURL
Constantin, Peter; Elgindi, Tarek; Ignatova, Mihaela; Vicol, Vlad Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields. (English) Zbl 1373.35239 SIAM J. Math. Anal. 49, No. 3, 1932-1946 (2017). Reviewer: Yuxi Hu (Beijing) MSC: 35Q35 35Q30 76D09 76D07 76D05 PDF BibTeX XML Cite \textit{P. Constantin} et al., SIAM J. Math. Anal. 49, No. 3, 1932--1946 (2017; Zbl 1373.35239) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Vicol, Vlad; Wang, Fei The van Dommelen and Shen singularity in the Prandtl equations. (English) Zbl 1357.35058 Adv. Math. 307, 288-311 (2017). MSC: 35B44 35Q31 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Adv. Math. 307, 288--311 (2017; Zbl 1357.35058) Full Text: DOI arXiv OpenURL
Constantin, Peter; Kukavica, Igor; Vicol, Vlad Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. (English) Zbl 1353.35233 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 6, 1569-1588 (2016). MSC: 35Q35 35Q30 76D09 35B65 PDF BibTeX XML Cite \textit{P. Constantin} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 6, 1569--1588 (2016; Zbl 1353.35233) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Tuffaha, Amjad; Vicol, Vlad; Wang, Fei On the existence for the free interface 2D Euler equation with a localized vorticity condition. (English) Zbl 1351.35118 Appl. Math. Optim. 73, No. 3, 523-544 (2016). MSC: 35Q31 35B45 76D03 76U05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Appl. Math. Optim. 73, No. 3, 523--544 (2016; Zbl 1351.35118) Full Text: DOI OpenURL
Constantin, Peter; Vicol, Vlad; Wu, Jiahong Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models. (English) Zbl 1422.35135 Adv. Math. 285, 352-393 (2015). MSC: 35Q35 35B65 35Q31 PDF BibTeX XML Cite \textit{P. Constantin} et al., Adv. Math. 285, 352--393 (2015; Zbl 1422.35135) Full Text: DOI arXiv OpenURL
Glatt-Holtz, Nathan; Šverák, Vladimír; Vicol, Vlad On inviscid limits for the stochastic Navier-Stokes equations and related models. (English) Zbl 1316.35227 Arch. Ration. Mech. Anal. 217, No. 2, 619-649 (2015). MSC: 35Q30 60H15 35R60 35Q31 76F55 PDF BibTeX XML Cite \textit{N. Glatt-Holtz} et al., Arch. Ration. Mech. Anal. 217, No. 2, 619--649 (2015; Zbl 1316.35227) Full Text: DOI arXiv OpenURL
Constantin, Peter; Kukavica, Igor; Vicol, Vlad On the inviscid limit of the Navier-Stokes equations. (English) Zbl 1309.35073 Proc. Am. Math. Soc. 143, No. 7, 3075-3090 (2015). MSC: 35Q35 35Q30 76D09 PDF BibTeX XML Cite \textit{P. Constantin} et al., Proc. Am. Math. Soc. 143, No. 7, 3075--3090 (2015; Zbl 1309.35073) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Masmoudi, Nader; Vicol, Vlad; Wong, Tak Kwong On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. (English) Zbl 1317.35202 SIAM J. Math. Anal. 46, No. 6, 3865-3890 (2014). Reviewer: Cheng He (Beijing) MSC: 35Q35 76D03 76D10 PDF BibTeX XML Cite \textit{I. Kukavica} et al., SIAM J. Math. Anal. 46, No. 6, 3865--3890 (2014; Zbl 1317.35202) Full Text: DOI arXiv Link OpenURL
Dabkowski, Michael; Kiselev, Alexander; Silvestre, Luis; Vicol, Vlad Global well-posedness of slightly supercritical active scalar equations. (English) Zbl 1294.35092 Anal. PDE 7, No. 1, 43-72 (2014). MSC: 35Q35 76U05 35B44 35B50 35Q53 35B65 35Q31 PDF BibTeX XML Cite \textit{M. Dabkowski} et al., Anal. PDE 7, No. 1, 43--72 (2014; Zbl 1294.35092) Full Text: DOI arXiv OpenURL
Constantin, Peter; Glatt-Holtz, Nathan; Vicol, Vlad Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. (English) Zbl 1294.35078 Commun. Math. Phys. 330, No. 2, 819-857 (2014). MSC: 35Q31 35R11 35A01 35A02 35R60 76D05 PDF BibTeX XML Cite \textit{P. Constantin} et al., Commun. Math. Phys. 330, No. 2, 819--857 (2014; Zbl 1294.35078) Full Text: DOI arXiv OpenURL
Glatt-Holtz, Nathan E.; Vicol, Vlad C. Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. (English) Zbl 1304.35545 Ann. Probab. 42, No. 1, 80-145 (2014). Reviewer: Oleg Dementiev (Chelyabinsk) MSC: 35Q35 60H15 35R60 35Q31 35B65 PDF BibTeX XML Cite \textit{N. E. Glatt-Holtz} and \textit{V. C. Vicol}, Ann. Probab. 42, No. 1, 80--145 (2014; Zbl 1304.35545) Full Text: DOI arXiv Euclid OpenURL
Constantin, Peter; Vicol, Vlad Nonlinear maximum principles for dissipative linear nonlocal operators and applications. (English) Zbl 1256.35078 Geom. Funct. Anal. 22, No. 5, 1289-1321 (2012). MSC: 35Q35 76B03 35Q31 PDF BibTeX XML Cite \textit{P. Constantin} and \textit{V. Vicol}, Geom. Funct. Anal. 22, No. 5, 1289--1321 (2012; Zbl 1256.35078) Full Text: DOI arXiv OpenURL
Paicu, Marius; Vicol, Vlad Analyticity and gevrey-class regularity for the second-grade fluid equations. (English) Zbl 1270.35370 J. Math. Fluid Mech. 13, No. 4, 533-555 (2011). MSC: 35Q35 76A10 76B03 35Q31 PDF BibTeX XML Cite \textit{M. Paicu} and \textit{V. Vicol}, J. Math. Fluid Mech. 13, No. 4, 533--555 (2011; Zbl 1270.35370) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Vicol, Vlad On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. (English) Zbl 1213.35345 Nonlinearity 24, No. 3, 765-796 (2011). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35Q31 76B03 35B65 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{V. Vicol}, Nonlinearity 24, No. 3, 765--796 (2011; Zbl 1213.35345) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Vicol, Vlad C. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. (English) Zbl 1308.35192 Discrete Contin. Dyn. Syst. 29, No. 1, 285-303 (2011). MSC: 35Q31 35A20 35B65 35Q30 76B03 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{V. C. Vicol}, Discrete Contin. Dyn. Syst. 29, No. 1, 285--303 (2011; Zbl 1308.35192) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Temam, Roger; Vicol, Vlad C.; Ziane, Mohammed Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. (English) Zbl 1204.35129 J. Differ. Equations 250, No. 3, 1719-1746 (2011). MSC: 35Q31 35A10 76B03 86A05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Differ. Equations 250, No. 3, 1719--1746 (2011; Zbl 1204.35129) Full Text: DOI OpenURL
Kukavica, Igor; Temam, Roger; Vicol, Vlad; Ziane, Mohammed Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data. (English. Abridged French version) Zbl 1194.35247 C. R., Math., Acad. Sci. Paris 348, No. 11-12, 639-645 (2010). MSC: 35L50 35Q31 PDF BibTeX XML Cite \textit{I. Kukavica} et al., C. R., Math., Acad. Sci. Paris 348, No. 11--12, 639--645 (2010; Zbl 1194.35247) Full Text: DOI OpenURL