×

Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. (English) Zbl 1257.35147

Summary: We prove well-posedness for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by \(p(\rho ) = C _{\gamma } \rho ^{\gamma }\) for \(\gamma > 1\). The physical vacuum singularity requires the sound speed \(c\) to go to zero as the square-root of the distance to the moving boundary, and thus creates a degenerate and characteristic hyperbolic free-boundary system wherein the density vanishes on the free-boundary, the uniform Kreiss-Lopatinskii condition is violated, and manifest derivative loss ensues. Nevertheless, we are able to establish the existence of unique solutions to this system on a short time-interval, which are smooth (in Sobolev spaces) all the way to the moving boundary, and our estimates have no derivative loss with respect to initial data. Our proof is founded on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term, chosen to preserve as much of the geometric structure of the Euler equations as possible. We first construct solutions to this degenerate parabolic regularization using a higher-order version of Hardy’s inequality; we then establish estimates for solutions to this degenerate parabolic system which are independent of the artificial viscosity parameter. Solutions to the compressible Euler equations are found in the limit as the artificial viscosity tends to zero. Our regular solutions can be viewed as degenerate viscosity solutions. Our methodology can be applied to many other systems of degenerate and characteristic hyperbolic systems of conservation laws.

MSC:

35Q31 Euler equations
35R37 Moving boundary problems for PDEs
35R35 Free boundary problems for PDEs
35D40 Viscosity solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ambrose D., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58, 479–521 (2009) · Zbl 1172.35058 · doi:10.1512/iumj.2009.58.3450
[2] Chen G.-Q., Wang Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Rational Mech. Anal. 187, 369–408 (2008) · Zbl 1172.76016 · doi:10.1007/s00205-007-0070-8
[3] Cheng A., Coutand D., Shkoller S.: On the motion of vortex sheets with surface tension in the 3D Euler equations with vorticity. Commun. Pure Appl. Math. 61, 1715–1752 (2008) · Zbl 1165.35041 · doi:10.1002/cpa.20240
[4] Coulombel J.-F., Secchi P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Ecole Norm. Sup. 41, 85–139 (2008) · Zbl 1160.35061
[5] Coulombel J.-F., Secchi P.: Uniqueness of 2-D compressible vortex sheets. Commun. Pure Appl. Anal. 8, 1439–1450 (2009) · Zbl 1160.76040 · doi:10.3934/cpaa.2009.8.1439
[6] Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Reprinting of the 1948 original. Applied Mathematical Sciences, Vol. 21. Springer, New York-Heidelberg, 1976 · Zbl 0365.76001
[7] Coutand D., Lindblad H., Shkoller S.: A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296, 559–587 (2010) · Zbl 1193.35139 · doi:10.1007/s00220-010-1028-5
[8] Coutand D., Shkoller S.: On the interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Rational Mech. Anal. 179, 303–352 (2006) · Zbl 1138.74325 · doi:10.1007/s00205-005-0385-2
[9] Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007) · Zbl 1123.35038 · doi:10.1090/S0894-0347-07-00556-5
[10] Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64, 328–366 (2011) · Zbl 1217.35119 · doi:10.1002/cpa.20344
[11] Epstein C.L., Mazzeo R.: Wright-Fisher diffusion in one dimension. SIAM J. Math. Anal. 42, 568–608 (2010) · Zbl 1221.35063 · doi:10.1137/090766152
[12] Francheteau J., Métivier G.: Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Astérisque 268, 1–198 (2000) · Zbl 0996.35001
[13] Glimm, J., Majda, A.: Multidimensional hyperbolic problems and computations. The IMA Volumes in Mathematics and its Applications, Vol. 29. Springer, New York, 1991 · Zbl 0718.00008
[14] Gués O., Métivier G., Williams M., Zumbrun K.: Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Rational Mech. Anal. 175, 151–244 (2005) · Zbl 1072.35122 · doi:10.1007/s00205-004-0342-5
[15] Jang J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Rational Mech. Anal. 195, 797–863 (2010) · Zbl 1197.35294 · doi:10.1007/s00205-009-0253-6
[16] Jang J., Masmoudi N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009) · Zbl 1213.35298 · doi:10.1002/cpa.20285
[17] Kreiss H.O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–296 (1970) · Zbl 0193.06902 · doi:10.1002/cpa.3160230304
[18] Kufner, A.: Weighted Sobolev Spaces. Wiley-Interscience, New York, 1985 · Zbl 0567.46009
[19] Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005) · Zbl 1069.35056 · doi:10.1090/S0894-0347-05-00484-4
[20] Lin L.W.: On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121, 406–425 (1987) · Zbl 0644.76084 · doi:10.1016/0022-247X(87)90253-8
[21] Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194 (2005) · Zbl 1095.35021 · doi:10.4007/annals.2005.162.109
[22] Lindblad H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260, 319–392 (2005) · Zbl 1094.35088 · doi:10.1007/s00220-005-1406-6
[23] Liu T.-P.: Compressible flow with damping and vacuum. Jpn. J. Appl. Math. 13, 25–32 (1996) · Zbl 0865.35107 · doi:10.1007/BF03167296
[24] Liu T.-P., Yang T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223–237 (1997) · Zbl 0890.35111 · doi:10.1006/jdeq.1997.3281
[25] Liu T.-P., Yang T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–510 (2000) · Zbl 1033.76050
[26] Liu T.-P., Smoller J.: On the vacuum state for isentropic gas dynamics equations. Adv. Math. 1, 345–359 (1980) · Zbl 0461.76055 · doi:10.1016/0196-8858(80)90016-0
[27] Luo T., Xin Z., Yang T.: Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000) · Zbl 0966.35098 · doi:10.1137/S0036141097331044
[28] Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984) · Zbl 0537.76001
[29] Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. Patterns and Waves. Stud. Math. Appl., Vol. 18. North-Holland, Amsterdam, 459–479, 1986 · Zbl 0623.35058
[30] Matusu-Necasova S., Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas III. Jpn. J. Indust. Appl. Math. 14, 199–213 (1997) · Zbl 1306.76038 · doi:10.1007/BF03167264
[31] Métivier, G.: Stability of multidimensional shocks. Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Their Applications, Vol. 47. Birkhäuser, Boston, 25–103, 2001 · Zbl 1017.35075
[32] Nalimov V.I.: The Cauchy-Poisson problem. Dynamika Splosh. Sredy 18, 104–210 (1974, in Russian)
[33] Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas. Jpn. J. Indust. Appl. Math. 10, 219–235 (1993) · Zbl 0783.76082 · doi:10.1007/BF03167573
[34] Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008) · Zbl 1174.76001 · doi:10.1002/cpa.20213
[35] Taylor, M.: Partial Differential Equations, Vols. I–III. Springer, Berlin, 1996
[36] Temam, R.: Navier-Stokes equations. Theory and Numerical Analysis, 3rd edn. Studies in Mathematics and its Applications, Vol. 2. North-Holland, Amsterdam, 1984 · Zbl 0568.35002
[37] Trakhinin Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Rational Mech. Anal. 177, 331–366 (2005) · Zbl 1094.76066 · doi:10.1007/s00205-005-0364-7
[38] Trakhinin Y.: Local existence for the free boundary problem for the non-relativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1551–1594 (2009) · Zbl 1185.35342 · doi:10.1002/cpa.20282
[39] Trakhinin Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Rational Mech. Anal. 191, 245–310 (2009) · Zbl 1161.76062 · doi:10.1007/s00205-008-0124-6
[40] Video of Discussion: Free boundary problems related to water waves. Summer Program: Nonlinear Conservation Laws and Applications, July 13–31, 2009. Institute for Mathematics and its Applications. http://www.ima.umn.edu/videos/?id=915 , 2009
[41] Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997) · Zbl 0892.76009 · doi:10.1007/s002220050177
[42] Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495 (1999) · Zbl 0921.76017 · doi:10.1090/S0894-0347-99-00290-8
[43] Xu C.-J., Yang T.: Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ. 210, 217–231 (2005) · Zbl 1061.35049 · doi:10.1016/j.jde.2004.06.005
[44] Yang T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190, 211–231 (2006) · Zbl 1083.76052 · doi:10.1016/j.cam.2005.01.043
[45] Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid. Publ. RIMS Kyoto Univ. 18, 49–96 (1982) · Zbl 0493.76018 · doi:10.2977/prims/1195184016
[46] Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61, 877–940 (2008) · Zbl 1158.35107 · doi:10.1002/cpa.20226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.