Beirão da Veiga, Hugo; Yang, Jiaqi Onsager’s conjecture for the incompressible Euler equations in the Hölog spaces \(C^{0,\alpha}_\lambda (\bar{\Omega})\). (English) Zbl 1435.35288 J. Math. Fluid Mech. 22, No. 2, Paper No. 27, 10 p. (2020). MSC: 35Q31 76B03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, J. Math. Fluid Mech. 22, No. 2, Paper No. 27, 10 p. (2020; Zbl 1435.35288) Full Text: DOI arXiv OpenURL
Beirão da Veiga, Hugo Classical solutions to the two-dimensional Euler equations and elliptic boundary value problems, an overview. (English) Zbl 1362.35217 Robinson, James C. (ed.) et al., Recent progress in the theory of the Euler and Navier-Stokes equations. Based on the workshop “The Navier-Stokes equations in Venice”, Venice, Italy, April 8–12, 2013. Cambridge: Cambridge University Press (ISBN 978-1-107-55497-9/pbk; 978-1-316-40710-3/ebook). London Mathematical Society Lecture Note Series 430, 1-21 (2016). MSC: 35Q31 35B65 76B03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Lond. Math. Soc. Lect. Note Ser. 430, 1--21 (2016; Zbl 1362.35217) OpenURL
da Veiga, Hugo Beirão On some regularity results for the stationary Stokes system and the 2-\(D\) Euler equations. (English) Zbl 1348.35179 Port. Math. (N.S.) 72, No. 2-3, 285-307 (2015). MSC: 35Q31 26B30 26B35 35A09 35B65 35J25 35Q30 76D07 PDF BibTeX XML Cite \textit{H. B. da Veiga}, Port. Math. (N.S.) 72, No. 2--3, 285--307 (2015; Zbl 1348.35179) Full Text: DOI OpenURL
Beirão Da Veiga, H.; Crispo, F. The 3D inviscid limit result under slip boundary conditions. A negative answer. (English) Zbl 1294.35057 J. Math. Fluid Mech. 14, No. 1, 55-59 (2012). MSC: 35Q30 35Q31 76D03 76B03 PDF BibTeX XML Cite \textit{H. Beirão Da Veiga} and \textit{F. Crispo}, J. Math. Fluid Mech. 14, No. 1, 55--59 (2012; Zbl 1294.35057) Full Text: DOI arXiv OpenURL
Beirão da Veiga, H.; Crispo, F. A missed persistence property for the Euler equations and its effect on inviscid limits. (English) Zbl 1245.35087 Nonlinearity 25, No. 6, 1661-1669 (2012). MSC: 35Q31 76D05 76D09 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{F. Crispo}, Nonlinearity 25, No. 6, 1661--1669 (2012; Zbl 1245.35087) Full Text: DOI arXiv OpenURL
Beirão da Veiga, H.; Crispo, Francesca Sharp inviscid limit results under Navier-type boundary conditions. An \(L^p\) theory. (English) Zbl 1261.35099 J. Math. Fluid Mech. 12, No. 3, 397-411 (2010). MSC: 35Q30 35Q31 76D03 76B03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{F. Crispo}, J. Math. Fluid Mech. 12, No. 3, 397--411 (2010; Zbl 1261.35099) Full Text: DOI OpenURL
Beirão da Veiga, H. On the sharp vanishing viscosity limit of viscous incompressible fluid flows. (English) Zbl 1195.35246 Fursikov, Andrei V. (ed.) et al., New directions in mathematical fluid mechanics. The Alexander V. Kazhikhov memorial volume. Boston, MA: Birkhäuser (ISBN 978-3-0346-0151-1/hbk). Advances in Mathematical Fluid Mechanics, 113-122 (2010). MSC: 35Q30 35Q31 76D05 76D09 76M45 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, in: New directions in mathematical fluid mechanics. The Alexander V. Kazhikhov memorial volume. Boston, MA: Birkhäuser. 113--122 (2010; Zbl 1195.35246) OpenURL
Beirão da Veiga, Hugo; Kaplický, Petr; Růžička, Michael Regularity theorems, up to the boundary, for shear thickening flows. (English) Zbl 1352.35085 C. R., Math., Acad. Sci. Paris 348, No. 9-10, 541-544 (2010). MSC: 35Q05 76D03 76D05 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} et al., C. R., Math., Acad. Sci. Paris 348, No. 9--10, 541--544 (2010; Zbl 1352.35085) Full Text: DOI OpenURL
Beirão da Veiga, Hugo The initial-boundary value problem for the non-barotropic compressible Euler equations: Structural-stability and data dependence. (English) Zbl 0836.35092 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11, No. 3, 297-311 (1994). MSC: 35L70 35B30 76N10 35F30 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11, No. 3, 297--311 (1994; Zbl 0836.35092) Full Text: DOI Numdam EuDML OpenURL
Beirão da Veiga, Hugo Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible Euler equations. (English) Zbl 0791.35102 Commun. Pure Appl. Math. 46, No. 2, 221-259 (1993). Reviewer: H.Beirão da Veiga (Pisa) MSC: 35Q35 35B20 35B30 35L10 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Commun. Pure Appl. Math. 46, No. 2, 221--259 (1993; Zbl 0791.35102) Full Text: DOI OpenURL
Beirão da Veiga, Hugo On the well-posedness of the Euler flow in bounded domains. (English) Zbl 0683.35071 Advanced topics in the theory of dynamical systems, Notes Rep. Math. Sci. Eng. 6, 27-35 (1989). Reviewer: G.Warnecke MSC: 35Q05 35L60 35L65 76B99 PDF BibTeX XML OpenURL
Beirão da Veiga, Hugo A well-posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem. (English) Zbl 0682.35012 J. Differ. Equations 78, No. 2, 308-319 (1989). Reviewer: G.Warnecke MSC: 35B30 35L60 76B99 35L65 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, J. Differ. Equations 78, No. 2, 308--319 (1989; Zbl 0682.35012) Full Text: DOI OpenURL
Beirão da Veiga, H. Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow. (English) Zbl 0709.35082 Rend. Semin. Mat. Univ. Padova 79, 247-273 (1988). Reviewer: J.Schmeelk MSC: 35Q35 35F10 35D05 35G10 35K25 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Rend. Semin. Mat. Univ. Padova 79, 247--273 (1988; Zbl 0709.35082) Full Text: Numdam EuDML OpenURL
Beirão da Veiga, Hugo Well-posedness and motion of inviscid fluids. (English) Zbl 0688.76002 Rend. Semin. Mat., Torino Fasc. Spec., 33-45 (1988). MSC: 76A02 35Q30 35R25 PDF BibTeX XML OpenURL
Beirão da Veiga, Hugo Kato’s perturbation theory and well-posedness for the Euler equations in bounded domains. (English) Zbl 0672.35044 Arch. Ration. Mech. Anal. 104, No. 4, 367-382 (1988). Reviewer: B.Straughan MSC: 35L60 35A05 35B30 46E35 35Q99 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Arch. Ration. Mech. Anal. 104, No. 4, 367--382 (1988; Zbl 0672.35044) Full Text: DOI OpenURL
Beirão da Veiga, Hugo On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid. (English) Zbl 0497.35005 J. Differ. Equations 54, 373-389 (1984). MSC: 35B30 35F25 35Q99 35A05 47D03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, J. Differ. Equations 54, 373--389 (1983; Zbl 0497.35005) Full Text: DOI OpenURL
Beirão da Veiga, Hugo On the Euler equations for non-homogeneous ideal incompressible fluids. (English) Zbl 0469.76008 Recent contributions to nonlinear partial differential equations, Lect. Paris 1978/79, Res. Notes Math. 50, 63-76 (1981). MSC: 76Bxx 35Q05 PDF BibTeX XML OpenURL
Beirão da Veiga, Hugo; Valli, Alberto On the Euler equations for nonhomogeneous fluids. II. (English) Zbl 0503.76008 J. Math. Anal. Appl. 73, 338-350 (1980). MSC: 76Bxx PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{A. Valli}, J. Math. Anal. Appl. 73, 338--350 (1980; Zbl 0503.76008) Full Text: DOI OpenURL
Beirão da Veiga, Hugo; Valli, Alberto On the Euler equations for nonhomogeneous fluids. I. (English) Zbl 0459.76003 Rend. Sem. Mat. Univ. Padova 63, 151-168 (1980). MSC: 76Bxx PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{A. Valli}, Rend. Semin. Mat. Univ. Padova 63, 151--168 (1980; Zbl 0459.76003) Full Text: Numdam EuDML OpenURL
Beirão da Veiga, Hugo; Valli, Alberto On the motion of a non-homogeneous ideal incompressible fluid in an external force field. (English) Zbl 0433.76001 Rend. Sem. Mat. Univ. Padova 59, 117-145 (1978). MSC: 76A02 35A07 35Q05 53B20 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{A. Valli}, Rend. Semin. Mat. Univ. Padova 59, 117--145 (1978; Zbl 0433.76001) Full Text: Numdam EuDML OpenURL