Ameen, Ismail; Baleanu, Dumitru; Ali, Hegagi Mohamed An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. (English) Zbl 07501464 Chaos Solitons Fractals 137, Article ID 109892, 11 p. (2020). MSC: 93A30 26A33 49J15 47N40 93D20 PDF BibTeX XML Cite \textit{I. Ameen} et al., Chaos Solitons Fractals 137, Article ID 109892, 11 p. (2020; Zbl 07501464) Full Text: DOI OpenURL
Sweilam, N. H.; AL-Mekhlafi, S. M.; Alshomrani, A. S.; Baleanu, D. Comparative study for optimal control nonlinear variable-order fractional tumor model. (English) Zbl 07501402 Chaos Solitons Fractals 136, Article ID 109810, 12 p. (2020). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Chaos Solitons Fractals 136, Article ID 109810, 12 p. (2020; Zbl 07501402) Full Text: DOI OpenURL
Moghadam, Abolfazl Soltanpour; Arabameri, Maryam; Baleanu, Dumitru; Barfeie, Mahdiar Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. (English) Zbl 07242859 Math. Methods Appl. Sci. 43, No. 7, 3936-3953 (2020). MSC: 65T60 35R11 26A33 11B68 PDF BibTeX XML Cite \textit{A. S. Moghadam} et al., Math. Methods Appl. Sci. 43, No. 7, 3936--3953 (2020; Zbl 07242859) Full Text: DOI OpenURL
Amin, Muhammad; Abbas, Muhammad; Iqbal, Muhammad Kashif; Baleanu, Dumitru Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations. (English) Zbl 1459.35372 Adv. Difference Equ. 2019, Paper No. 183, 22 p. (2019). MSC: 35R11 26A33 65M12 65M06 65M70 65D07 PDF BibTeX XML Cite \textit{M. Amin} et al., Adv. Difference Equ. 2019, Paper No. 183, 22 p. (2019; Zbl 1459.35372) Full Text: DOI OpenURL
Sweilam, N. H.; Al-Mekhlafi, S. M.; Baleanu, D. Efficient numerical treatments for a fractional optimal control nonlinear tuberculosis model. (English) Zbl 1407.65226 Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018). MSC: 65M70 26A33 35R11 65H10 49M15 92C50 92C60 49K20 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018; Zbl 1407.65226) Full Text: DOI OpenURL
Jajarmi, Amin; Baleanu, Dumitru Suboptimal control of fractional-order dynamic systems with delay argument. (English) Zbl 1400.93126 J. Vib. Control 24, No. 12, 2430-2446 (2018). MSC: 93C25 26A33 PDF BibTeX XML Cite \textit{A. Jajarmi} and \textit{D. Baleanu}, J. Vib. Control 24, No. 12, 2430--2446 (2018; Zbl 1400.93126) Full Text: DOI OpenURL
Abdeljawad, Thabet; Baleanu, Dumitru Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. (English) Zbl 1412.47086 J. Nonlinear Sci. Appl. 10, No. 3, 1098-1107 (2017). MSC: 26A33 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{D. Baleanu}, J. Nonlinear Sci. Appl. 10, No. 3, 1098--1107 (2017; Zbl 1412.47086) Full Text: DOI arXiv OpenURL
Baleanu, Dumitru; Jajarmi, Amin; Hajipour, Mojtaba A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. (English) Zbl 1383.49030 J. Optim. Theory Appl. 175, No. 3, 718-737 (2017). MSC: 49K15 49J40 49M30 26A33 33E12 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Optim. Theory Appl. 175, No. 3, 718--737 (2017; Zbl 1383.49030) Full Text: DOI OpenURL
Coronel-Escamilla, Antonio; Gómez-Aguilar, José Francisco; Baleanu, Dumitru; Escobar-Jiménez, Ricardo Fabricio; Olivares-Peregrino, Victor Hugo; Abundez-Pliego, Arturo Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel. (English) Zbl 1419.34014 Adv. Difference Equ. 2016, Paper No. 283, 17 p. (2016). MSC: 34A08 70H05 PDF BibTeX XML Cite \textit{A. Coronel-Escamilla} et al., Adv. Difference Equ. 2016, Paper No. 283, 17 p. (2016; Zbl 1419.34014) Full Text: DOI OpenURL
Baleanu, Dumitru; Asad, Jihad H.; Petras, Ivo Numerical solution of the fractional Euler-Lagrange’s equations of a thin elastica model. (English) Zbl 1431.74020 Nonlinear Dyn. 81, No. 1-2, 97-102 (2015). MSC: 74B20 65L12 34A08 65L05 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Nonlinear Dyn. 81, No. 1--2, 97--102 (2015; Zbl 1431.74020) Full Text: DOI OpenURL
Abdeljawad, Thabet; Baleanu, Dumitru Fractional differences and integration by parts. (English) Zbl 1225.39008 J. Comput. Anal. Appl. 13, No. 3, 574-582 (2011). Reviewer: Murat Adivar (Izmir) MSC: 39A12 26A33 39A10 49J15 49M25 39A70 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{D. Baleanu}, J. Comput. Anal. Appl. 13, No. 3, 574--582 (2011; Zbl 1225.39008) OpenURL
Baleanu, Dumitru; Trujillo, Juan I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. (English) Zbl 1221.34008 Commun. Nonlinear Sci. Numer. Simul. 15, No. 5, 1111-1115 (2010). MSC: 34A08 26A33 45J05 70H03 PDF BibTeX XML Cite \textit{D. Baleanu} and \textit{J. I. Trujillo}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 5, 1111--1115 (2010; Zbl 1221.34008) Full Text: DOI OpenURL
Baleanu, Dumitru; Golmankhaneh, Ali Khalili; Golmankhaneh, Alireza Khalili The dual action of fractional multi time Hamilton equations. (English) Zbl 1405.34005 Int. J. Theor. Phys. 48, No. 9, 2558-2569 (2009). MSC: 34A08 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Int. J. Theor. Phys. 48, No. 9, 2558--2569 (2009; Zbl 1405.34005) Full Text: DOI OpenURL
Baleanu, Dumitru; Muslih, Sami I. Nonconservative systems within fractional generalized derivatives. (English) Zbl 1229.70048 J. Vib. Control 14, No. 9-10, 1301-1311 (2008). MSC: 70H03 26A33 PDF BibTeX XML Cite \textit{D. Baleanu} and \textit{S. I. Muslih}, J. Vib. Control 14, No. 9--10, 1301--1311 (2008; Zbl 1229.70048) Full Text: DOI OpenURL
Baleanu, Dumitru; Muslih, Sami I.; Rabei, Eqab M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. (English) Zbl 1170.70324 Nonlinear Dyn. 53, No. 1-2, 67-74 (2008). MSC: 70H03 70H05 26A33 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Nonlinear Dyn. 53, No. 1--2, 67--74 (2008; Zbl 1170.70324) Full Text: DOI arXiv OpenURL
Baleanu, Dumitru; Maaraba (Abdeljawad), Thabet; Jarad, Fahd Fractional variational principles with delay. (English) Zbl 1141.49321 J. Phys. A, Math. Theor. 41, No. 31, Article ID 315403, 8 p. (2008). MSC: 49S05 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Phys. A, Math. Theor. 41, No. 31, Article ID 315403, 8 p. (2008; Zbl 1141.49321) Full Text: DOI OpenURL
Baleanu, Dumitru; Muslih, Sami I. Fractional Euler-Lagrange and fractional Hamilton equations for super symmetric classical model. (English) Zbl 1152.26006 Fractals 15, No. 4, 379-383 (2007). Reviewer: Zu-Guo Yu (Brisbane) MSC: 26A33 28A80 PDF BibTeX XML Cite \textit{D. Baleanu} and \textit{S. I. Muslih}, Fractals 15, No. 4, 379--383 (2007; Zbl 1152.26006) Full Text: DOI OpenURL
Agrawal, Om. P.; Baleanu, Dumitru A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. (English) Zbl 1182.70047 J. Vib. Control 13, No. 9-10, 1269-1281 (2007). Reviewer: Bojidar Cheshankov (Sofia) MSC: 70Q05 70-08 26A33 PDF BibTeX XML Cite \textit{Om. P. Agrawal} and \textit{D. Baleanu}, J. Vib. Control 13, No. 9--10, 1269--1281 (2007; Zbl 1182.70047) Full Text: DOI OpenURL
Muslih, Sami I.; Baleanu, Dumitru Fractional Euler-Lagrange equations of motion in fractional space. (English) Zbl 1158.49008 J. Vib. Control 13, No. 9-10, 1209-1216 (2007). MSC: 49J27 49K27 26A33 PDF BibTeX XML Cite \textit{S. I. Muslih} and \textit{D. Baleanu}, J. Vib. Control 13, No. 9--10, 1209--1216 (2007; Zbl 1158.49008) Full Text: DOI OpenURL
Baleanu, Dumitru Fractional Hamiltonian analysis of irregular systems. (English) Zbl 1172.94362 Signal Process. 86, No. 10, 2632-2636 (2006). MSC: 94A12 PDF BibTeX XML Cite \textit{D. Baleanu}, Signal Process. 86, No. 10, 2632--2636 (2006; Zbl 1172.94362) Full Text: DOI OpenURL
Baleanu, Dumitru; Agrawal, Om. P. Fractional Hamiltonian formalism within Caputo’s derivative. (English) Zbl 1111.37304 Czech. J. Phys. 56, No. 10-11, 10887-1092 (2006). MSC: 37J45 26A33 70H03 70H05 49J05 PDF BibTeX XML Cite \textit{D. Baleanu} and \textit{Om. P. Agrawal}, Czech. J. Phys. 56, No. 10--11, 10887--1092 (2006; Zbl 1111.37304) Full Text: DOI arXiv OpenURL
Sadallah, Madhat; Muslih, Sami I.; Baleanu, Dumitru Equations of motion for Einstein’s field in non-integer dimensional space. (English) Zbl 1129.83341 Czech. J. Phys. 56, No. 4, 323-328 (2006). MSC: 83D05 83C10 PDF BibTeX XML Cite \textit{M. Sadallah} et al., Czech. J. Phys. 56, No. 4, 323--328 (2006; Zbl 1129.83341) Full Text: DOI OpenURL