Gabeleh, M.; Felicit, J. Maria; Eldred, A. Anthony Edelstein’s theorem for cyclic contractive mappings in strictly convex Banach spaces. (English) Zbl 07241953 Numer. Funct. Anal. Optim. 41, No. 9, 1027-1044 (2020). Reviewer: Stefan Czerwik (Gliwice) MSC: 47H10 47H09 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., Numer. Funct. Anal. Optim. 41, No. 9, 1027--1044 (2020; Zbl 07241953) Full Text: DOI
Suzuki, Tomonari Edelstein’s fixed point theorem in semimetric spaces. (English) Zbl 1407.54036 J. Nonlinear Var. Anal. 2, No. 2, 165-175 (2018). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54E25 PDF BibTeX XML Cite \textit{T. Suzuki}, J. Nonlinear Var. Anal. 2, No. 2, 165--175 (2018; Zbl 1407.54036) Full Text: DOI
Martínez-Moreno, Juan; Sintunavarat, Wutiphol; Kumam, Poom Banach’s contraction principle for nonlinear contraction mappings in modular metric spaces. (English) Zbl 06679135 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 335-344 (2017). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{J. Martínez-Moreno} et al., Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 335--344 (2017; Zbl 06679135) Full Text: DOI
Suzuki, Tomonari; Alamri, Badriah; Kikkawa, Misako Edelstein’s fixed point theorem in generalized metric spaces. (English) Zbl 1352.54038 J. Nonlinear Convex Anal. 16, No. 11, 2301-2309 (2015). Reviewer: In-Sook Kim (Suwon) MSC: 54H25 54E35 PDF BibTeX XML Cite \textit{T. Suzuki} et al., J. Nonlinear Convex Anal. 16, No. 11, 2301--2309 (2015; Zbl 1352.54038) Full Text: Link
Popescu, Ovidiu Some generalizations of Suzuki and Edelstein type theorems. (English) Zbl 1295.54074 Fixed Point Theory Appl. 2013, Paper No. 319, 11 p. (2013). MSC: 54H25 PDF BibTeX XML Cite \textit{O. Popescu}, Fixed Point Theory Appl. 2013, Paper No. 319, 11 p. (2013; Zbl 1295.54074) Full Text: DOI
Shen, Yonghong; Chen, Wei Fixed point theorems for cyclic contraction mappings in fuzzy metric spaces. (English) Zbl 1429.54058 Fixed Point Theory Appl. 2013, Paper No. 133, 9 p. (2013). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{W. Chen}, Fixed Point Theory Appl. 2013, Paper No. 133, 9 p. (2013; Zbl 1429.54058) Full Text: DOI
Razani, Abdolrahman A contraction theorem in fuzzy metric spaces. (English) Zbl 1102.54005 Fixed Point Theory Appl. 2005, No. 3, 257-265 (2005). Reviewer: S. Ganguly (Kolkata) MSC: 54A40 54H25 PDF BibTeX XML Cite \textit{A. Razani}, Fixed Point Theory Appl. 2005, No. 3, 257--265 (2005; Zbl 1102.54005) Full Text: DOI EuDML
Shih, Mauhsiang; Tam, Pingkwan; Tan, Kokkeong On topological linear contractions on normed spaces and application. (English) Zbl 0949.47047 Chin. Ann. Math., Ser. B 20, No. 2, 159-168 (1999). MSC: 47H10 47H20 46A32 47L05 47A30 39A11 46N99 47D03 46G05 PDF BibTeX XML Cite \textit{M. Shih} et al., Chin. Ann. Math., Ser. B 20, No. 2, 159--168 (1999; Zbl 0949.47047) Full Text: DOI
Kubiak, T. Fixed points and coincidences in sequentially compact spaces. (English) Zbl 0667.54021 Libertas Math. 8, 97-100 (1988). MSC: 54H25 PDF BibTeX XML Cite \textit{T. Kubiak}, Libertas Math. 8, 97--100 (1988; Zbl 0667.54021)
Chakrabarty, M. K. On solutions of certain functional equations. (English) Zbl 0453.54029 Bull. Calcutta Math. Soc. 71, 7-11 (1979). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. K. Chakrabarty}, Bull. Calcutta Math. Soc. 71, 7--11 (1979; Zbl 0453.54029)