Ghisi, Marina; Gobbino, Massimo; Haraux, Alain Small perturbations for a Duffing-like evolution equation involving non-commuting operators. (English) Zbl 07321629 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 14, 44 p. (2021). MSC: 35B40 35L76 35L35 35L90 PDF BibTeX XML Cite \textit{M. Ghisi} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 14, 44 p. (2021; Zbl 07321629) Full Text: DOI
Ghaleb, A. F.; Abou-Dina, M. S.; Moatimid, G. M.; Zekry, M. H. Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: stability analysis. (English) Zbl 07318189 Math. Comput. Simul. 180, 129-151 (2021). MSC: 92C 65H PDF BibTeX XML Cite \textit{A. F. Ghaleb} et al., Math. Comput. Simul. 180, 129--151 (2021; Zbl 07318189) Full Text: DOI
Demina, Maria V. Liouvillian integrability of the generalized Duffing oscillators. (English) Zbl 07301487 Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 34A34 34C05 PDF BibTeX XML Cite \textit{M. V. Demina}, Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021; Zbl 07301487) Full Text: DOI
Liu, Chaoran; Yu, Kaiping; Liao, Baopeng; Hu, Rongping Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter. (English) Zbl 07299048 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105654, 18 p. (2021). Reviewer: Jiri Náprstek (Praha) MSC: 74H45 74H55 74H60 70K05 70K44 70K50 PDF BibTeX XML Cite \textit{C. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105654, 18 p. (2021; Zbl 07299048) Full Text: DOI
Nikolov, Svetoslav G.; Vassilev, Vassil M. Completely integrable dynamical systems of Hopf-Langford type. (English) Zbl 1454.37056 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021). MSC: 37J35 70H06 PDF BibTeX XML Cite \textit{S. G. Nikolov} and \textit{V. M. Vassilev}, Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021; Zbl 1454.37056) Full Text: DOI
Mall, Susmita; Jeswal, Sumit Kumar; Chakraverty, Snehashish Connectionist learning models for application problems involving differential and integral equations. (English) Zbl 07324108 Chakraverty, Snehashish (ed.), Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley & Sons (ISBN 978-1-119-58550-3/hbk; 978-1-119-58564-0/ebook). 1-22 (2020). MSC: 74 76 80 PDF BibTeX XML Cite \textit{S. Mall} et al., in: Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley \& Sons. 1--22 (2020; Zbl 07324108) Full Text: DOI
Zhang, Jingjing An improved Störmer-Verlet method based on exact discretization for nonlinear oscillators. (English) Zbl 07323492 Appl. Math. Comput. 386, Article ID 125476, 14 p. (2020). MSC: 65L06 65L11 70H05 70H12 PDF BibTeX XML Cite \textit{J. Zhang}, Appl. Math. Comput. 386, Article ID 125476, 14 p. (2020; Zbl 07323492) Full Text: DOI
Syam, Muhammed I. The modified fractional power series method for solving fractional undamped Duffing equation with cubic nonlinearity. (English) Zbl 07296471 Nonlinear Dyn. Syst. Theory 20, No. 5, 568-577 (2020). MSC: 70K 65L PDF BibTeX XML Cite \textit{M. I. Syam}, Nonlinear Dyn. Syst. Theory 20, No. 5, 568--577 (2020; Zbl 07296471) Full Text: Link
Shen, Tengfei; Liu, Wenbin; Zhang, Wei; Ye, Tiefeng Existence and convergence of solutions to periodic boundary value problems for Kirchhoff equations via coincidence degree method. (English) Zbl 07279012 Math. Methods Appl. Sci. 43, No. 15, 8683-8693 (2020). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B15 47N20 PDF BibTeX XML Cite \textit{T. Shen} et al., Math. Methods Appl. Sci. 43, No. 15, 8683--8693 (2020; Zbl 07279012) Full Text: DOI
El-Dib, Yusry O. Stability approach of a fractional-delayed Duffing oscillator. (English) Zbl 07274340 Discontin. Nonlinearity Complex. 9, No. 3, 367-376 (2020). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 34K37 34K20 PDF BibTeX XML Cite \textit{Y. O. El-Dib}, Discontin. Nonlinearity Complex. 9, No. 3, 367--376 (2020; Zbl 07274340) Full Text: DOI
Jiang, Fangfang Periodic solutions of discontinuous Duffing equations. (English) Zbl 07273486 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 93, 16 p. (2020). Reviewer: Alessandro Fonda (Trieste) MSC: 34C25 34A36 37C60 PDF BibTeX XML Cite \textit{F. Jiang}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 93, 16 p. (2020; Zbl 07273486) Full Text: DOI
Zhang, Xinli Quasi-periodic solutions for Duffing equation with jumping term. (Chinese. English summary) Zbl 07267496 Period. Ocean Univ. China 50, No. 4, 145-150 (2020). MSC: 34C27 34C15 34C20 PDF BibTeX XML Cite \textit{X. Zhang}, Period. Ocean Univ. China 50, No. 4, 145--150 (2020; Zbl 07267496) Full Text: DOI
Chen, Lu Applications of the Moser’s twist theorem to some impulsive differential equations. (English) Zbl 1453.34022 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 75, 20 p. (2020). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34A37 34C27 34C11 PDF BibTeX XML Cite \textit{L. Chen}, Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 75, 20 p. (2020; Zbl 1453.34022) Full Text: DOI
Mohanty, R. K.; Manchanda, Geetan; Khan, Arshad; Khurana, Gunjan A new high accuracy method in exponential form based on off-step discretization for non-linear two point boundary value problems. (English) Zbl 1437.65080 J. Difference Equ. Appl. 26, No. 2, 171-202 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L12 65L20 65L50 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., J. Difference Equ. Appl. 26, No. 2, 171--202 (2020; Zbl 1437.65080) Full Text: DOI
Burra, Lakshmi; Zanolin, Fabio Chaos in a periodically perturbed second-order equation with signum nonlinearity. (English) Zbl 1445.34055 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050031, 9 p. (2020). MSC: 34C15 37C60 34A36 34C25 34C28 PDF BibTeX XML Cite \textit{L. Burra} and \textit{F. Zanolin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050031, 9 p. (2020; Zbl 1445.34055) Full Text: DOI
Cheng, Zhibo; Yuan, Qigang Damped superlinear Duffing equation with strong singularity of repulsive type. (English) Zbl 1447.34043 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 37, 18 p. (2020). Reviewer: Alberto Boscaggin (Collegno) MSC: 34C25 34B16 37E40 34C23 34C15 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{Q. Yuan}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 37, 18 p. (2020; Zbl 1447.34043) Full Text: DOI
Liu, Shiwei; Zheng, Juan; Fang, Yonglei Obrechkoff two-step method fitted with Fourier spectrum for undamped Duffing equation. (English) Zbl 1433.65127 J. Math. Chem. 58, No. 3, 717-734 (2020). MSC: 65L05 65L06 65L12 PDF BibTeX XML Cite \textit{S. Liu} et al., J. Math. Chem. 58, No. 3, 717--734 (2020; Zbl 1433.65127) Full Text: DOI
Kim, Jinkyu; Lee, Hyeonseok; Shin, Jinwon Extended framework of Hamilton’s principle applied to Duffing oscillation. (English) Zbl 1433.70033 Appl. Math. Comput. 367, Article ID 124762, 17 p. (2020). MSC: 70H25 34C15 37N05 70K50 70K05 PDF BibTeX XML Cite \textit{J. Kim} et al., Appl. Math. Comput. 367, Article ID 124762, 17 p. (2020; Zbl 1433.70033) Full Text: DOI
Khurshudyan, Asatur Zh. An identity for the Heaviside function and its application in representation of nonlinear Green’s function. (English) Zbl 1438.46049 Comput. Appl. Math. 39, No. 1, Paper No. 32, 12 p. (2020). MSC: 46F30 46F10 46T30 34A05 34A34 PDF BibTeX XML Cite \textit{A. Zh. Khurshudyan}, Comput. Appl. Math. 39, No. 1, Paper No. 32, 12 p. (2020; Zbl 1438.46049) Full Text: DOI
Zhang, Guoqi; Wu, Zhiqiang Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations. (English) Zbl 1448.34077 Chaos Solitons Fractals 127, 342-353 (2019). MSC: 34C15 34C27 34C60 34A45 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Z. Wu}, Chaos Solitons Fractals 127, 342--353 (2019; Zbl 1448.34077) Full Text: DOI
Urenda-Cázares, Ernesto; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H. An integral of motion for the damped cubic-quintic Duffing oscillator with variable coefficients. (English) Zbl 07264489 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019). MSC: 93D 93C PDF BibTeX XML Cite \textit{E. Urenda-Cázares} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019; Zbl 07264489) Full Text: DOI
Balogh, Andras; Banda, Jacob; Yagdjian, Karen High-performance implementation of a Runge-Kutta finite-difference scheme for the Higgs boson equation in the de Sitter spacetime. (English) Zbl 07263914 Commun. Nonlinear Sci. Numer. Simul. 68, 15-30 (2019). MSC: 65L 65M 35K 34A PDF BibTeX XML Cite \textit{A. Balogh} et al., Commun. Nonlinear Sci. Numer. Simul. 68, 15--30 (2019; Zbl 07263914) Full Text: DOI
Chuĭko, S. M.; Nesmelova, O. V. The Newton-Kantorovich method in the theory of autonomous Noetherian boundary-value problems in the case of parametric resonance. (Russian. English summary) Zbl 1449.34062 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 12, 3-12 (2019). MSC: 34B15 34A45 PDF BibTeX XML Cite \textit{S. M. Chuĭko} and \textit{O. V. Nesmelova}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 12, 3--12 (2019; Zbl 1449.34062) Full Text: DOI
Dong, Hejin; Shen, Jianhua The Lagrange stability of a class of impulsive differential equation. (Chinese. English summary) Zbl 1449.35047 J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 4, 376-383 (2019). MSC: 35B35 35R12 PDF BibTeX XML Cite \textit{H. Dong} and \textit{J. Shen}, J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 4, 376--383 (2019; Zbl 1449.35047) Full Text: DOI
Ivanov, A. A. Analysis of the effect of random noise on synchronization in a system of two coupled Duffing oscillators. (Russian, English) Zbl 1438.60072 Sib. Zh. Ind. Mat. 22, No. 1, 41-52 (2019); translation in J. Appl. Ind. Math. 13, No. 1, 65-75 (2019). MSC: 60H10 34C15 65C05 PDF BibTeX XML Cite \textit{A. A. Ivanov}, Sib. Zh. Ind. Mat. 22, No. 1, 41--52 (2019; Zbl 1438.60072); translation in J. Appl. Ind. Math. 13, No. 1, 65--75 (2019) Full Text: DOI
Schließauf, Henrik Escaping orbits are rare in the quasi-periodic Littlewood boundedness problem. (English) Zbl 1427.37050 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 24, 21 p. (2019). Reviewer: Piotr Garbaczewski (Opole) MSC: 37J46 37J40 70K43 70K40 PDF BibTeX XML Cite \textit{H. Schließauf}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 24, 21 p. (2019; Zbl 1427.37050) Full Text: DOI
Isojima, Shin; Toyama, Hirotaka Ultradiscrete analogues of the hard-spring equation and its conserved quantity. (English) Zbl 1410.34045 Japan J. Ind. Appl. Math. 36, No. 1, 53-78 (2019). MSC: 34A34 39A10 39A23 PDF BibTeX XML Cite \textit{S. Isojima} and \textit{H. Toyama}, Japan J. Ind. Appl. Math. 36, No. 1, 53--78 (2019; Zbl 1410.34045) Full Text: DOI
Shen, Jianhua; Chen, Lu; Yuan, Xiaoping Lagrange stability for impulsive Duffing equations. (English) Zbl 1416.34023 J. Differ. Equations 266, No. 11, 6924-6962 (2019). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 34C11 34A37 37C27 34C15 37J40 PDF BibTeX XML Cite \textit{J. Shen} et al., J. Differ. Equations 266, No. 11, 6924--6962 (2019; Zbl 1416.34023) Full Text: DOI
López-Reyes, L. J.; Kurmyshev, Evguenii V. Parametric resonance in nonlinear vibrations of string under harmonic heating. (English) Zbl 07262132 Commun. Nonlinear Sci. Numer. Simul. 55, 146-156 (2018). MSC: 74H45 74K05 74F15 74F05 PDF BibTeX XML Cite \textit{L. J. López-Reyes} and \textit{E. V. Kurmyshev}, Commun. Nonlinear Sci. Numer. Simul. 55, 146--156 (2018; Zbl 07262132) Full Text: DOI
Gusso, André; Pimentel, Jéssica D. Approximate fully analytical Fourier series solution to the forced and damped Helmholtz-Duffing oscillator. (English) Zbl 07182479 Appl. Math. Modelling 61, 593-603 (2018). MSC: 34A25 34C15 PDF BibTeX XML Cite \textit{A. Gusso} and \textit{J. D. Pimentel}, Appl. Math. Modelling 61, 593--603 (2018; Zbl 07182479) Full Text: DOI
Yao, Shaowen; Cheng, Zhibo Positive periodic solution for damped Duffing equation with singularity. (Chinese. English summary) Zbl 1424.34131 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 543-548 (2018). MSC: 34C25 34B16 47N20 34B18 PDF BibTeX XML Cite \textit{S. Yao} and \textit{Z. Cheng}, Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 543--548 (2018; Zbl 1424.34131)
Georgiev, Zhivko D.; Uzunov, Ivan M.; Todorov, Todor G. Analysis and synthesis of oscillator systems described by a perturbed double-well Duffing equation. (English) Zbl 1412.34149 Nonlinear Dyn. 94, No. 1, 57-85 (2018). MSC: 34C37 34C28 34C05 37C29 PDF BibTeX XML Cite \textit{Z. D. Georgiev} et al., Nonlinear Dyn. 94, No. 1, 57--85 (2018; Zbl 1412.34149) Full Text: DOI
Syam, Muhammed I.; Raja, Muhammad Asif; Syam, Mahmmoud M.; Jaradat, H. M. An accurate method for solving the undamped Duffing equation with cubic nonlinearity. (English) Zbl 1401.76020 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 69, 16 p. (2018). MSC: 76A05 76W05 76Z99 65L05 PDF BibTeX XML Cite \textit{M. I. Syam} et al., Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 69, 16 p. (2018; Zbl 1401.76020) Full Text: DOI
Eilertsen, Justin; Magnan, Jerry On the chaotic dynamics associated with the center manifold equations of double-diffusive convection near a codimension-four bifurcation point at moderate thermal Rayleigh number. (English) Zbl 1395.37023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 8, Article ID 1850094, 24 p. (2018). MSC: 37D45 35Q35 37G25 37G20 35B42 PDF BibTeX XML Cite \textit{J. Eilertsen} and \textit{J. Magnan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 8, Article ID 1850094, 24 p. (2018; Zbl 1395.37023) Full Text: DOI
Miino, Yuu; Ueta, Tetsushi; Kawakami, Hiroshi Nonlinear resonance and devil’s staircase in a forced planer system containing a piecewise linear hysteresis. (English) Zbl 1392.34043 Chaos Solitons Fractals 111, 75-85 (2018). MSC: 34C23 34A38 34C28 37G15 PDF BibTeX XML Cite \textit{Y. Miino} et al., Chaos Solitons Fractals 111, 75--85 (2018; Zbl 1392.34043) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term. (English) Zbl 1394.35291 Nonlinear Anal., Real World Appl. 43, 167-191 (2018). MSC: 35L90 35L77 35B40 74K10 PDF BibTeX XML Cite \textit{M. Ghisi} et al., Nonlinear Anal., Real World Appl. 43, 167--191 (2018; Zbl 1394.35291) Full Text: DOI
Fečkan, Michal; Marynets, Kateryna Approximation approach to periodic BVP for mixed fractional differential systems. (English) Zbl 1388.34006 J. Comput. Appl. Math. 339, 208-217 (2018). MSC: 34A08 34B15 34A45 PDF BibTeX XML Cite \textit{M. Fečkan} and \textit{K. Marynets}, J. Comput. Appl. Math. 339, 208--217 (2018; Zbl 1388.34006) Full Text: DOI
Kalita, Piotr; Kowalski, Piotr M. On multivalued Duffing equation. (English) Zbl 1452.34031 J. Math. Anal. Appl. 462, No. 2, 1130-1147 (2018). Reviewer: Jan Tomeček (Olomouc) MSC: 34A60 34C15 47N20 34B15 PDF BibTeX XML Cite \textit{P. Kalita} and \textit{P. M. Kowalski}, J. Math. Anal. Appl. 462, No. 2, 1130--1147 (2018; Zbl 1452.34031) Full Text: DOI
Varshney, Vaibhav; Sabarathinam, S.; Prasad, Awadhesh; Thamilmaran, K. Infinite number of hidden attractors in memristor-based autonomous Duffing oscillator. (English) Zbl 1388.34028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850013, 13 p. (2018). MSC: 34C15 34C05 34D45 34C60 94C05 PDF BibTeX XML Cite \textit{V. Varshney} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850013, 13 p. (2018; Zbl 1388.34028) Full Text: DOI
Rahimkhani, P.; Moeti, R. Numerical solution of the fractional order Duffing-van der Pol oscillator equation by using Bernoulli wavelets collocation method. (English) Zbl 1382.65201 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 59, 18 p. (2018). MSC: 65L05 34A08 34K28 65T60 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{R. Moeti}, Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 59, 18 p. (2018; Zbl 1382.65201) Full Text: DOI
Lomtatidze, Alexander; Šremr, Jiří On periodic solutions to second-order Duffing type equations. (English) Zbl 1396.34024 Nonlinear Anal., Real World Appl. 40, 215-242 (2018). Reviewer: Petru Jebelean (Timişoara) MSC: 34C25 37C60 34A40 PDF BibTeX XML Cite \textit{A. Lomtatidze} and \textit{J. Šremr}, Nonlinear Anal., Real World Appl. 40, 215--242 (2018; Zbl 1396.34024) Full Text: DOI
Gasparetto, Carlo; Gazzola, Filippo Resonance tongues for the Hill equation with Duffing coefficients and instabilities in a nonlinear beam equation. (English) Zbl 1382.34061 Commun. Contemp. Math. 20, No. 1, Article ID 1750022, 22 p. (2018). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 34D20 34B30 34C15 PDF BibTeX XML Cite \textit{C. Gasparetto} and \textit{F. Gazzola}, Commun. Contemp. Math. 20, No. 1, Article ID 1750022, 22 p. (2018; Zbl 1382.34061) Full Text: DOI arXiv
Özyapici, Ali Generalized trial equation method and its applications to Duffing and Poisson-Boltzmann equations. (English) Zbl 1424.34063 Turk. J. Math. 41, No. 3, 686-693 (2017). MSC: 34A45 34A05 34A34 PDF BibTeX XML Cite \textit{A. Özyapici}, Turk. J. Math. 41, No. 3, 686--693 (2017; Zbl 1424.34063) Full Text: DOI
Johannessen, Kim The Duffing oscillator with damping for a softening potential. (English) Zbl 1397.34064 Int. J. Appl. Comput. Math. 3, No. 4, 3805-3816 (2017). MSC: 34C15 34B30 PDF BibTeX XML Cite \textit{K. Johannessen}, Int. J. Appl. Comput. Math. 3, No. 4, 3805--3816 (2017; Zbl 1397.34064) Full Text: DOI
Yuan, Xiaoping Boundedness of solutions for Duffing equation with low regularity in time. (English) Zbl 1394.34063 Chin. Ann. Math., Ser. B 38, No. 5, 1037-1046 (2017). Reviewer: Zaihong Wang (Beijing) MSC: 34C11 34D20 PDF BibTeX XML Cite \textit{X. Yuan}, Chin. Ann. Math., Ser. B 38, No. 5, 1037--1046 (2017; Zbl 1394.34063) Full Text: DOI
Jiang, Tao; Yang, Zhiyan; Jing, Zhujun Bifurcations and chaos in the Duffing equation with parametric excitation and single external forcing. (English) Zbl 1377.34047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750125, 31 p. (2017). MSC: 34C15 70K40 34C37 34C29 34C28 70K28 34C23 34D10 PDF BibTeX XML Cite \textit{T. Jiang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750125, 31 p. (2017; Zbl 1377.34047) Full Text: DOI
Wiggers, Vinícius; Rech, Paulo C. Multistability and organization of periodicity in a van der Pol-Duffing oscillator. (English) Zbl 1375.34077 Chaos Solitons Fractals 103, 632-637 (2017). MSC: 34C60 34C15 PDF BibTeX XML Cite \textit{V. Wiggers} and \textit{P. C. Rech}, Chaos Solitons Fractals 103, 632--637 (2017; Zbl 1375.34077) Full Text: DOI
Liu, Yuji Boundary value problems for impulsive Bagley-Torvik models involving the Riemann-Liouville fractional derivatives. (English) Zbl 1370.34015 São Paulo J. Math. Sci. 11, No. 1, 148-188 (2017). MSC: 34A08 34B37 26A33 39B99 45G10 34B15 34B16 PDF BibTeX XML Cite \textit{Y. Liu}, São Paulo J. Math. Sci. 11, No. 1, 148--188 (2017; Zbl 1370.34015) Full Text: DOI
Medak, Beata; Tret’yakov, Alexey A. Application of \(p\)-regularity theory to the Duffing equation. (English) Zbl 06741154 Bound. Value Probl. 2017, Paper No. 85, 9 p. (2017). MSC: 34B15 34B16 47J05 PDF BibTeX XML Cite \textit{B. Medak} and \textit{A. A. Tret'yakov}, Bound. Value Probl. 2017, Paper No. 85, 9 p. (2017; Zbl 06741154) Full Text: DOI
Chen, Hebai; Chen, Xingwu; Xie, Jianhua Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. (English) Zbl 1366.34043 Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1273-1293 (2017). MSC: 34C05 34C07 34C23 34C37 34A34 PDF BibTeX XML Cite \textit{H. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1273--1293 (2017; Zbl 1366.34043) Full Text: DOI
Zivieri, Roberto; Vergura, Silvano; Carpentieri, Mario Analytical and numerical solution to the nonlinear cubic Duffing equation: an application to electrical signal analysis of distribution lines. (English) Zbl 07163314 Appl. Math. Modelling 40, No. 21-22, 9152-9164 (2016). MSC: 78 65 PDF BibTeX XML Cite \textit{R. Zivieri} et al., Appl. Math. Modelling 40, No. 21--22, 9152--9164 (2016; Zbl 07163314) Full Text: DOI
Llibre, Jaume The averaging theory for computing periodic orbits. (English) Zbl 1430.70090 Corbera, Montserrat (ed.) et al., Central configurations, periodic orbits, and Hamiltonian systems. Lecture notes given at the research program on central configurations, periodic orbits and beyond in celestial mechanics, Barcelona, Spain, January 27–31, 2014. Basel: Birkhäuser/Springer. Adv. Courses in Math., CRM Barc., 1-104 (2016). Reviewer: Vasile Marinca (Timişoara) MSC: 70K65 70H12 37J46 34C25 PDF BibTeX XML Cite \textit{J. Llibre}, in: Central configurations, periodic orbits, and Hamiltonian systems. Lecture notes given at the research program on central configurations, periodic orbits and beyond in celestial mechanics, Barcelona, Spain, January 27--31, 2014. Basel: Birkhäuser/Springer. 1--104 (2016; Zbl 1430.70090) Full Text: DOI
Çavuş, Abdullah; Khadjiev, Djavvat; Öztürk, Seda On periodic solutions to nonlinear differential equations in Banach spaces. (English) Zbl 06749767 Filomat 30, No. 4, 1069-1076 (2016). MSC: 34G 47D 42A PDF BibTeX XML Cite \textit{A. Çavuş} et al., Filomat 30, No. 4, 1069--1076 (2016; Zbl 06749767) Full Text: DOI
Srinivasan, K.; Chandrasekar, V. K.; Venkatesan, A.; Raja Mohamed, I. Duffing-van der Pol oscillator type dynamics in Murali-Lakshmanan-Chua (MLC) circuit. (English) Zbl 1355.94100 Chaos Solitons Fractals 82, 60-71 (2016). MSC: 94C05 37N20 37M05 34C60 34C28 PDF BibTeX XML Cite \textit{K. Srinivasan} et al., Chaos Solitons Fractals 82, 60--71 (2016; Zbl 1355.94100) Full Text: DOI
Choi, Jin Hyuk; Lee, SeungGwan; Kim, Hyunsoo Stochastic effects for the reaction-Duffing equation with Wick-type product. (English) Zbl 1372.35381 Adv. Math. Phys. 2016, Article ID 9062343, 11 p. (2016). MSC: 35R60 35C05 60H15 PDF BibTeX XML Cite \textit{J. H. Choi} et al., Adv. Math. Phys. 2016, Article ID 9062343, 11 p. (2016; Zbl 1372.35381) Full Text: DOI
Singh, Jitendra Approximate solution for nonlinear oscillator with cubic and quintic nonlinearities. (English) Zbl 1344.65075 Kumar Sinha, Arun (ed.) et al., Recent advances in mathematics, statistics and computer science. Proceedings of the international conference, ICRAMSCS, Bihar, India, May 29–31, 2015. Hackensack, NJ: World Scientific (ISBN 978-981-4696-16-6/hbk; 978-981-4704-84-7/ebook). 115-124 (2016). MSC: 65L99 34C15 PDF BibTeX XML Cite \textit{J. Singh}, in: Recent advances in mathematics, statistics and computer science. Proceedings of the international conference, ICRAMSCS, Bihar, India, May 29--31, 2015. Hackensack, NJ: World Scientific. 115--124 (2016; Zbl 1344.65075) Full Text: DOI
Wang, Xiaoming; Wang, Lixia; Tan, Hainv A new approach to the existence of quasiperiodic solutions for a class of semilinear Duffing-type equations with time-periodic parameters. (English) Zbl 1342.34052 Bound. Value Probl. 2016, Paper No. 132, 12 p. (2016). MSC: 34C12 37C55 PDF BibTeX XML Cite \textit{X. Wang} et al., Bound. Value Probl. 2016, Paper No. 132, 12 p. (2016; Zbl 1342.34052) Full Text: DOI
Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun Long-term dynamics of autonomous fractional differential equations. (English) Zbl 1338.34020 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 4, Article ID 1650055, 10 p. (2016). MSC: 34A08 34D05 34D20 34D45 34C15 PDF BibTeX XML Cite \textit{T. Liu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 4, Article ID 1650055, 10 p. (2016; Zbl 1338.34020) Full Text: DOI
Liang, Shuqing The rate of decay of stable periodic solutions for Duffing equation with \(L^p\)-conditions. (English) Zbl 1347.34067 NoDEA, Nonlinear Differ. Equ. Appl. 23, No. 2, Paper No. 15, 16 p. (2016). Reviewer: Rafael Ortega (Granada) MSC: 34C25 34D20 PDF BibTeX XML Cite \textit{S. Liang}, NoDEA, Nonlinear Differ. Equ. Appl. 23, No. 2, Paper No. 15, 16 p. (2016; Zbl 1347.34067) Full Text: DOI
Cheng, Zhuan; Duan, Jinqiao; Wang, Liang Most probable dynamics of some nonlinear systems under noisy fluctuations. (English) Zbl 07246163 Commun. Nonlinear Sci. Numer. Simul. 30, No. 1-3, 108-114 (2015). MSC: 37 70 PDF BibTeX XML Cite \textit{Z. Cheng} et al., Commun. Nonlinear Sci. Numer. Simul. 30, No. 1--3, 108--114 (2015; Zbl 07246163) Full Text: DOI
Dai, Chao-Qing; Xu, Yun-Jie Exact solutions for a Wick-type stochastic reaction Duffing equation. (English) Zbl 1443.60067 Appl. Math. Modelling 39, No. 23-24, 7420-7426 (2015). MSC: 60H15 35C05 35K58 35R60 60H40 PDF BibTeX XML Cite \textit{C.-Q. Dai} and \textit{Y.-J. Xu}, Appl. Math. Modelling 39, No. 23--24, 7420--7426 (2015; Zbl 1443.60067) Full Text: DOI
Zakeri, Gholam-Ali; Yomba, Emmanuel Exact solutions of a generalized autonomous Duffing-type equation. (English) Zbl 1443.34007 Appl. Math. Modelling 39, No. 16, 4607-4616 (2015). MSC: 34A05 34C20 35Q55 PDF BibTeX XML Cite \textit{G.-A. Zakeri} and \textit{E. Yomba}, Appl. Math. Modelling 39, No. 16, 4607--4616 (2015; Zbl 1443.34007) Full Text: DOI
Wu, Guo-Cheng; Baleanu, Dumitru; Deng, Zhen-Guo Variational iteration method as a kernel constructive technique. (English) Zbl 1443.65447 Appl. Math. Modelling 39, No. 15, 4378-4384 (2015). MSC: 65R20 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Appl. Math. Modelling 39, No. 15, 4378--4384 (2015; Zbl 1443.65447) Full Text: DOI
Ju, Peijun Global residue harmonic balance method for Helmholtz-Duffing oscillator. (English) Zbl 1443.34034 Appl. Math. Modelling 39, No. 8, 2172-2179 (2015). MSC: 34C15 34A45 65L99 PDF BibTeX XML Cite \textit{P. Ju}, Appl. Math. Modelling 39, No. 8, 2172--2179 (2015; Zbl 1443.34034) Full Text: DOI
Aminikhah, H.; Sheikhani, A. Refahi; Rezazadeh, H. Functional variable method for solving the generalized reaction Duffing model and the perturbed Boussinesq equation. (English) Zbl 1412.35048 Adv. Model. Optim. 17, No. 1, 55-65 (2015). MSC: 35C07 76B15 PDF BibTeX XML Cite \textit{H. Aminikhah} et al., Adv. Model. Optim. 17, No. 1, 55--65 (2015; Zbl 1412.35048) Full Text: Link
Perkins, Edmon; Balachandran, Balakumar Effects of phase lag on the information rate of a bistable Duffing oscillator. (English) Zbl 1366.35017 Phys. Lett., A 379, No. 4, 308-313 (2015). MSC: 35C15 34F05 34F15 PDF BibTeX XML Cite \textit{E. Perkins} and \textit{B. Balachandran}, Phys. Lett., A 379, No. 4, 308--313 (2015; Zbl 1366.35017) Full Text: DOI
Wang, Feng; Zhu, Hailong Existence, uniqueness and stability of periodic solutions of a Duffing equation under periodic and anti-periodic eigenvalues conditions. (English) Zbl 1357.34078 Taiwanese J. Math. 19, No. 5, 1457-1468 (2015). MSC: 34C25 34D20 PDF BibTeX XML Cite \textit{F. Wang} and \textit{H. Zhu}, Taiwanese J. Math. 19, No. 5, 1457--1468 (2015; Zbl 1357.34078) Full Text: DOI
Shaw, Pankaj Kumar; Janaki, M. S.; Iyengar, A. N. S.; Singla, Tanu; Parmananda, P. Antiperiodic oscillations in a forced Duffing oscillator. (English) Zbl 1353.34042 Chaos Solitons Fractals 78, 256-266 (2015). MSC: 34C10 37C27 94C05 PDF BibTeX XML Cite \textit{P. K. Shaw} et al., Chaos Solitons Fractals 78, 256--266 (2015; Zbl 1353.34042) Full Text: DOI
Meng, Pinchao; Yin, Weishi Solutions for Duffing equations by first integral method. (Chinese. English summary) Zbl 1349.35340 J. Jilin Univ., Sci. 53, No. 6, 1186-1188 (2015). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{P. Meng} and \textit{W. Yin}, J. Jilin Univ., Sci. 53, No. 6, 1186--1188 (2015; Zbl 1349.35340) Full Text: DOI
Akhmet, Marat; Fen, Mehmet Onur Li-Yorke chaos in hybrid systems on a time scale. (English) Zbl 1334.37028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 14, Article ID 1540024, 10 p. (2015). MSC: 37D45 34C20 34N05 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{M. O. Fen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 14, Article ID 1540024, 10 p. (2015; Zbl 1334.37028) Full Text: DOI arXiv
Zufiria, Pedro J.; Jiménez, S. Characterizing chaos in a type of fractional Duffing’s equation. (English) Zbl 1354.37043 Discrete Contin. Dyn. Syst. 2015, Suppl., 660-669 (2015). MSC: 37D45 34C28 34A08 PDF BibTeX XML Cite \textit{P. J. Zufiria} and \textit{S. Jiménez}, Discrete Contin. Dyn. Syst. 2015, 660--669 (2015; Zbl 1354.37043) Full Text: DOI
Krishchenko, A. P. Localization of simple and complex dynamics in nonlinear systems. (English. Russian original) Zbl 1337.34045 Differ. Equ. 51, No. 11, 1432-1439 (2015); translation from Differ. Uravn. 51, No. 11, 1440-1447 (2015). MSC: 34C45 34D45 PDF BibTeX XML Cite \textit{A. P. Krishchenko}, Differ. Equ. 51, No. 11, 1432--1439 (2015; Zbl 1337.34045); translation from Differ. Uravn. 51, No. 11, 1440--1447 (2015) Full Text: DOI
Johannessen, Kim The Duffing oscillator with damping. (English) Zbl 1332.70025 Eur. J. Phys. 36, No. 6, Article ID 065020, 13 p. (2015). MSC: 70K40 PDF BibTeX XML Cite \textit{K. Johannessen}, Eur. J. Phys. 36, No. 6, Article ID 065020, 13 p. (2015; Zbl 1332.70025) Full Text: DOI
Stoyanov, Svetlin Analytical and numerical investigation on the Duffing oscilator subjected to a polyharmonic force excitation. (English) Zbl 1330.34062 J. Theor. Appl. Mech., Sofia 45, No. 1, 3-16 (2015). MSC: 34C15 34C60 74H45 97M50 PDF BibTeX XML Cite \textit{S. Stoyanov}, J. Theor. Appl. Mech., Sofia 45, No. 1, 3--16 (2015; Zbl 1330.34062) Full Text: DOI
Zhang, Wu-Fan; Zhao, Qiang The quasi-periodicity of the annual-cycle forced ENSO recharge oscillator model. (English) Zbl 1333.34082 Commun. Nonlinear Sci. Numer. Simul. 22, No. 1-3, 472-477 (2015). MSC: 34C60 86A10 34C15 34C23 34C25 34C27 34E10 PDF BibTeX XML Cite \textit{W.-F. Zhang} and \textit{Q. Zhao}, Commun. Nonlinear Sci. Numer. Simul. 22, No. 1--3, 472--477 (2015; Zbl 1333.34082) Full Text: DOI
Llibre, Jaume; Rodrigues, Ana A non-autonomous kind of Duffing equation. (English) Zbl 1328.34034 Appl. Math. Comput. 251, 669-674 (2015). MSC: 34C25 34E10 34C29 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{A. Rodrigues}, Appl. Math. Comput. 251, 669--674 (2015; Zbl 1328.34034) Full Text: DOI
Kamiński, Marcin; Corigliano, Alberto Numerical solution of the Duffing equation with random coefficients. (English) Zbl 1329.74314 Meccanica 50, No. 7, 1841-1853 (2015). MSC: 74S60 65C30 74H45 PDF BibTeX XML Cite \textit{M. Kamiński} and \textit{A. Corigliano}, Meccanica 50, No. 7, 1841--1853 (2015; Zbl 1329.74314) Full Text: DOI
Ren, Zhao-Hui; Xu, Yu-Hang; Han, Yan-Long; Zhang, Nan; Wen, Bang-Chun Influence of systematic coupling stiffness parameter on coupling duffing system lag self-synchronization characteristic. (English) Zbl 1323.34049 J. Appl. Nonlinear Dyn. 4, No. 3, 229-237 (2015). MSC: 34C15 70K99 34C60 34D06 PDF BibTeX XML Cite \textit{Z.-H. Ren} et al., J. Appl. Nonlinear Dyn. 4, No. 3, 229--237 (2015; Zbl 1323.34049) Full Text: DOI
Alquran, Marwan; Al-Shara, Safwan; Al-Nimrat, Sabreen Kink, singular soliton and periodic solutions to class of nonlinear equations. (English) Zbl 1326.74129 Appl. Appl. Math. 10, No. 1, 212-222 (2015). MSC: 74S30 74J35 35G20 35Q74 PDF BibTeX XML Cite \textit{M. Alquran} et al., Appl. Appl. Math. 10, No. 1, 212--222 (2015; Zbl 1326.74129) Full Text: Link
Chuiko, S. M. Nonlinear Noetherian boundary-value problem in the case of parametric resonance. (English. Ukrainian original) Zbl 1325.34029 J. Math. Sci., New York 205, No. 6, 859-870 (2015); translation from Neliniĭni Kolyvannya 17, No. 1, 137-148 (2014). MSC: 34B15 70K28 34A45 PDF BibTeX XML Full Text: DOI
Saadatmandi, Abbas; Mashhadi-Fini, Fateme A pseudospectral method for nonlinear Duffing equation involving both integral and non-integral forcing terms. (English) Zbl 1317.65259 Math. Methods Appl. Sci. 38, No. 7, 1265-1272 (2015). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{A. Saadatmandi} and \textit{F. Mashhadi-Fini}, Math. Methods Appl. Sci. 38, No. 7, 1265--1272 (2015; Zbl 1317.65259) Full Text: DOI
Högele, Michael; Pavlyukevich, Ilya Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Lévy type noise. (English) Zbl 1316.60095 Stoch. Dyn. 15, No. 3, Article ID 1550019, 26 p. (2015). MSC: 60H10 60G51 60G52 37A20 60J60 60J75 PDF BibTeX XML Cite \textit{M. Högele} and \textit{I. Pavlyukevich}, Stoch. Dyn. 15, No. 3, Article ID 1550019, 26 p. (2015; Zbl 1316.60095) Full Text: DOI
Liu, Chein-Shan A novel Lie-group theory and complexity of nonlinear dynamical systems. (English) Zbl 1345.34047 Commun. Nonlinear Sci. Numer. Simul. 20, No. 1, 39-58 (2015). Reviewer: Charis Harley (Johannesburg) MSC: 34C14 37C80 34C15 34C28 34C23 PDF BibTeX XML Cite \textit{C.-S. Liu}, Commun. Nonlinear Sci. Numer. Simul. 20, No. 1, 39--58 (2015; Zbl 1345.34047) Full Text: DOI
Zhu, H. T. Probabilistic solution of vibro-impact stochastic Duffing systems with a unilateral non-zero offset barrier. (English) Zbl 1395.70026 Physica A 410, 335-344 (2014). MSC: 70L05 34C15 PDF BibTeX XML Cite \textit{H. T. Zhu}, Physica A 410, 335--344 (2014; Zbl 1395.70026) Full Text: DOI
Elmas, N.; Boyaci, H. A new perturbation technique in solution of nonlinear differential equations by using variable transformation. (English) Zbl 1364.35065 Appl. Math. Comput. 227, 422-427 (2014). MSC: 35C20 35B25 PDF BibTeX XML Cite \textit{N. Elmas} and \textit{H. Boyaci}, Appl. Math. Comput. 227, 422--427 (2014; Zbl 1364.35065) Full Text: DOI
Su, Dongxu; Nakano, Kimihiko; Zheng, Rencheng; Cartmell, Matthew P. Investigations of a stiffness tunable nonlinear vibrational energy harvester. (English) Zbl 1359.34046 Int. J. Struct. Stab. Dyn. 14, No. 8, Article ID 1440023, 14 p. (2014). MSC: 34C60 34C15 PDF BibTeX XML Cite \textit{D. Su} et al., Int. J. Struct. Stab. Dyn. 14, No. 8, Article ID 1440023, 14 p. (2014; Zbl 1359.34046) Full Text: DOI
Liu, Chein-Shan Disclosing the complexity of nonlinear ship rolling and Duffing oscillators by a signum function. (English) Zbl 1356.37054 CMES, Comput. Model. Eng. Sci. 98, No. 4, 375-407 (2014). MSC: 37D45 34C15 65Pxx PDF BibTeX XML Cite \textit{C.-S. Liu}, CMES, Comput. Model. Eng. Sci. 98, No. 4, 375--407 (2014; Zbl 1356.37054) Full Text: DOI
Wang, Hui; Zhang, Weiwei; Chang, Anan Chaos control algorithm via variable universe fuzzy controller in automatic gauge system. (English) Zbl 1339.93072 Int. J. Appl. Math. Stat. 52, No. 5, 228-235 (2014). MSC: 93C42 PDF BibTeX XML Cite \textit{H. Wang} et al., Int. J. Appl. Math. Stat. 52, No. 5, 228--235 (2014; Zbl 1339.93072) Full Text: Link
Elías-Zúñiga, Alex Solution of the damped cubic-quintic Duffing oscillator by using Jacobi elliptic functions. (English) Zbl 1338.34078 Appl. Math. Comput. 246, 474-481 (2014). MSC: 34C15 33C05 34A45 PDF BibTeX XML Cite \textit{A. Elías-Zúñiga}, Appl. Math. Comput. 246, 474--481 (2014; Zbl 1338.34078) Full Text: DOI
Kuvshinova, E. V. Spontaneous breaking of gauge symmetry in cosmological models with expansion and rotation. (English. Russian original) Zbl 1314.83059 Russ. Phys. J. 57, No. 6, 777-782 (2014); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 57, No. 6, 65-69 (2014). MSC: 83F05 81R40 83C47 PDF BibTeX XML Cite \textit{E. V. Kuvshinova}, Russ. Phys. J. 57, No. 6, 777--782 (2014; Zbl 1314.83059); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 57, No. 6, 65--69 (2014) Full Text: DOI
Kowalski, Piotr Well-posed Dirichlet problems pertaining to the Duffing equation. (English) Zbl 1324.34039 Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 59, 15 p. (2014). MSC: 34B15 47N20 58E50 PDF BibTeX XML Cite \textit{P. Kowalski}, Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 59, 15 p. (2014; Zbl 1324.34039) Full Text: DOI Link
Feng, Zhaosheng Duffing-van der Pol-type oscillator systems. (English) Zbl 1308.34004 Discrete Contin. Dyn. Syst., Ser. S 7, No. 6, 1231-1257 (2014). MSC: 34A05 34C14 37G10 34C05 34C20 34C15 PDF BibTeX XML Cite \textit{Z. Feng}, Discrete Contin. Dyn. Syst., Ser. S 7, No. 6, 1231--1257 (2014; Zbl 1308.34004) Full Text: DOI
Kowalski, Piotr The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. (English) Zbl 1346.49013 Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2569-2580 (2014). MSC: 49J40 49J53 34A60 47H05 PDF BibTeX XML Cite \textit{P. Kowalski}, Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2569--2580 (2014; Zbl 1346.49013) Full Text: DOI
Boscaggin, Alberto; Ortega, Rafael Monotone twist maps and periodic solutions of systems of Duffing type. (English) Zbl 1331.34070 Math. Proc. Camb. Philos. Soc. 157, No. 2, 279-296 (2014). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 34C25 34C46 37E40 PDF BibTeX XML Cite \textit{A. Boscaggin} and \textit{R. Ortega}, Math. Proc. Camb. Philos. Soc. 157, No. 2, 279--296 (2014; Zbl 1331.34070) Full Text: DOI
Otoba, Nobuhiko Constant scalar curvature metrics on Hirzebruch surfaces. (English) Zbl 1302.53039 Ann. Global Anal. Geom. 46, No. 3, 197-223 (2014); erratum ibid. 46, No. 3, 225 (2014). MSC: 53C20 34B18 33E05 33E30 PDF BibTeX XML Cite \textit{N. Otoba}, Ann. Global Anal. Geom. 46, No. 3, 197--223 (2014; Zbl 1302.53039) Full Text: DOI arXiv
Yang, Zhiyan; Jiang, Tao; Jing, Zhujun Bifurcations and chaos of Duffing-van der Pol equation with nonsymmetric nonlinear restoring and two external forcing terms. (English) Zbl 1296.34102 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 3, Article ID 1430011, 30 p. (2014). MSC: 34C23 34C15 34C28 34D10 34C29 PDF BibTeX XML Cite \textit{Z. Yang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 3, Article ID 1430011, 30 p. (2014; Zbl 1296.34102) Full Text: DOI
Cai, Mei-xiang; Yang, Jian-ping; Deng, Jin Bifurcations and chaos in Duffing equation with damping and external excitations. (English) Zbl 1301.34048 Acta Math. Appl. Sin., Engl. Ser. 30, No. 2, 483-504 (2014). MSC: 34C15 34C23 34C29 34C28 PDF BibTeX XML Cite \textit{M.-x. Cai} et al., Acta Math. Appl. Sin., Engl. Ser. 30, No. 2, 483--504 (2014; Zbl 1301.34048) Full Text: DOI
Turkyilmazoglu, Mustafa A convergence condition of the homotopy analysis method. (English) Zbl 1301.65115 Liao, Shijun (ed.), Advances in the homotopy analysis method. Hackensack, NJ: World Scientific (ISBN 978-981-4551-24-3/hbk; 978-981-4551-26-7/ebook). 181-257 (2014). MSC: 65M99 65H05 45G10 45J05 65L03 65L10 34B15 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, in: Advances in the homotopy analysis method. Hackensack, NJ: World Scientific. 181--257 (2014; Zbl 1301.65115) Full Text: arXiv
Zhang, W.; Hu, H. L.; Qian, Y. H.; Gao, F. B. A refined asymptotic perturbation method for nonlinear dynamical systems. (English) Zbl 1310.70029 Arch. Appl. Mech. 84, No. 4, 591-606 (2014). Reviewer: Vasile Marinca (Timişoara) MSC: 70K60 70K28 70K70 PDF BibTeX XML Cite \textit{W. Zhang} et al., Arch. Appl. Mech. 84, No. 4, 591--606 (2014; Zbl 1310.70029) Full Text: DOI
Faghih Shojaei, M.; Ansari, R.; Mohammadi, V.; Rouhi, H. Nonlinear forced vibration analysis of postbuckled beams. (English) Zbl 1367.74019 Arch. Appl. Mech. 84, No. 3, 421-440 (2014). MSC: 74H45 74K10 74G60 74H15 PDF BibTeX XML Cite \textit{M. Faghih Shojaei} et al., Arch. Appl. Mech. 84, No. 3, 421--440 (2014; Zbl 1367.74019) Full Text: DOI