×

On the treatment of boundary conditions for bond-based peridynamic models. (English) Zbl 1506.74433

Summary: In this paper, we propose two approaches to apply boundary conditions for bond-based peridynamic models. There has been in recent years a renewed interest in the class of so-called non-local models, which include peridynamic models, for the simulation of structural mechanics problems as an alternative approach to classical local continuum models. However, a major issue, which is often disregarded when dealing with this class of models, is concerned with the manner by which boundary conditions should be prescribed. Our point of view here is that classical boundary conditions, since applied on surfaces of solid bodies, are naturally associated with local models. The paper describes two methods to incorporate classical Dirichlet and Neumann boundary conditions into bond-based peridynamics. The first method consists in artificially extending the domain with a thin boundary layer over which the displacement field is required to behave as an odd function with respect to the boundary points. The second method resorts to the idea that peridynamic models and local models should be compatible in the limit that the so-called horizon vanishes. The approach consists then in decreasing the horizon from a constant value in the interior of the domain to zero at the boundary so that one can directly apply the classical boundary conditions. We present the continuous and discrete formulations of the two methods and assess their performance on several numerical experiments dealing with the simulation of a one-dimensional bar.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74A70 Peridynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209 (2000) · Zbl 0970.74030
[2] Diehl, P.; Prudhomme, S.; Lévesque, M., A review of benchmark experiments for the validation of peridynamics models, J. Peridynamics Nonlocal Model., 1, 1, 14-35 (2019)
[3] Bobaru, F.; Yabg, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, Internat. J. Numer. Methods Engrg., 77, 852-877 (2009) · Zbl 1156.74399
[4] Sarego, G.; Le, Q. V.; Bobaru, F.; Zaccariotto, M.; Galvanetto, U., Linearized state-based peridynamics for 2-D problems, Internat. J. Numer. Methods Engrg., 108, 10, 1174-1197 (2016)
[5] Le, Q. V.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech., 61, 4, 499-518 (2018) · Zbl 1446.74084
[6] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 17-18, 1526-1535 (2005)
[7] Du, Q., Nonlocal calculus of variations and well-posedness of peridynamics, (Handbook of Peridynamic Modeling (2016), Chapman and Hall/CRC), 101-124
[8] Aksoylu, B.; Celiker, F.; Kilicer, O., Nonlocal operators with local boundary conditions in higher dimensions, Adv. Comput. Math., 45, 1, 453-492 (2019) · Zbl 1412.45017
[9] Gu, X.; Madenci, E.; Zhang, Q., Revisit of non-ordinary state-based peridynamics, Eng. Fract. Mech., 190, 31-52 (2018)
[10] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., A state-based peridynamic analysis in a finite element framework, Eng. Fract. Mech., 195, 104-128 (2018)
[11] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., Weak form of peridynamics for nonlocal essential and natural boundary conditions, Comput. Methods Appl. Mech. Engrg., 337, 598-631 (2018) · Zbl 1440.74030
[12] Gunzburger, M.; Lehoucq, R. B., A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8, 5, 1581-1598 (2010) · Zbl 1210.35057
[13] Aksoylu, B.; Mengesha, T., Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31, 12, 1301-1317 (2010) · Zbl 1206.35251
[14] Aksoylu, B.; Parks, M. L., Variational theory and domain decomposition for nonlocal problems, Appl. Math. Comput., 217, 14, 6498-6515 (2011) · Zbl 1214.65062
[15] Seleson, P.; Gunzburger, M.; Parks, M. L., Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains, Comput. Methods Appl. Mech. Engrg., 266, 185-204 (2013) · Zbl 1286.74010
[16] Seleson, P.; Littlewood, D. J., Convergence studies in meshfree peridynamic simulations, Comput. Math. Appl., 71, 11, 2432-2448 (2016) · Zbl 1443.65253
[17] Gerstle, W.; Sau, N.; Silling, S., Peridynamic modeling of plain and reinforced concrete structures, (SMiRT18: 18th Lnt. Conf. Struct. Mech. React. Technol., Beijing (2005)), 54-68
[18] Madenci, E.; Oterkus, E., Peridynamic Theory and its Applications, vol. 17 (2014), Springer · Zbl 1295.74001
[19] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J. Comput. Phys., 265, 71-96 (2014) · Zbl 1349.80020
[20] Zhou, K.; Du, Q., Mathematical and numerical analysis of linear peridynamics models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48, 5, 1759-1780 (2010) · Zbl 1220.82074
[21] Bobaru, F.; Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics, J. Multiscale Comput. Eng., 9, 6, 635-659 (2011)
[22] Silling, S.; Littlewood, D.; Seleson, P., Variable horizon in a peridynamic medium, J. Mech. Mater. Struct., 10, 5, 591-612 (2015)
[23] Seleson, P.; Du, Q.; Parks, M. L., On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models, Comput. Methods Appl. Mech. Engrg., 311, 698-722 (2016) · Zbl 1439.74044
[24] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Comm., 179, 11, 777-783 (2008) · Zbl 1197.82014
[25] Silling, S. A., Introduction to peridynamics, (Handbook of Peridynamic Modeling (2016), Chapman and Hall/CRC), 63-98
[26] Oterkus, E., Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures (2010), The University of Arizona, (Ph.D. thesis)
[27] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 1169-1178 (2007)
[28] Mitchell, J.; Silling, S.; Littlewood, D., A position-aware linear solid constitutive model for peridynamics, J. Mech. Mater. Struct., 10, 5, 539-557 (2015)
[29] Seleson, P., Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations, Comput. Methods Appl. Mech. Engrg., 282, 184-217 (2014) · Zbl 1423.74143
[30] Trask, N.; You, H.; Yu, Y.; Parks, M. L., An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput. Methods Appl. Mech. Engrg., 343, 151-165 (2019) · Zbl 1440.74463
[31] Zaccariotto, M.; Mudric, T.; Tomasi, D.; Shojaei, A.; Galvanetto, U., Coupling of FEM meshes with peridynamic grids, Comput. Methods Appl. Mech. Engrg., 330, 471-497 (2018) · Zbl 1439.65103
[32] Oliphant, T. E., A guide to NumPy, vol. 1 (2006), Trelgol Publishing USA
[33] van der Walt, S.; Colbert, S. C.; Varoquaux, G., The NumPy Array: A structure for efficient numerical computation, Comput. Sci. Eng., 13, 2, 22-30 (2011)
[34] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Jarrod Millman, K.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Contributors, Scipy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261-272 (2020)
[35] Hunter, J. D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 3, 90-95 (2007)
[36] Diehl, P.; Prudhomme, S., Supplementary Material: On the Treatment of Boundary Conditions for Bond-Based Peridynamics Models (2020), Zenodo
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.