×

Harmonic analysis and distribution-free inference for spherical distributions. (English) Zbl 1417.62135

Summary: Fourier analysis, and representation of circular distributions in terms of their Fourier coefficients, is quite commonly discussed and used for model-free inference such as testing uniformity and symmetry, in dealing with 2-dimensional directions. However, a similar discussion for spherical distributions, which are used to model 3-dimensional directional data, is not readily available in the literature in terms of their harmonics. This paper, in what we believe is the first such attempt, looks at probability distributions on a unit sphere through the perspective of spherical harmonics, analogous to the Fourier analysis for distributions on a unit circle. Representation of any continuous spherical density in terms of spherical harmonics is given, and such series expansions provided for some commonly used spherical distributions, as well as for two new spherical distributions that are introduced. Through the prism of harmonic analysis, one can look at the mean direction, dispersion, and various forms of symmetry for these models in a nonparametric setting. Aspects of distribution-free inference such as estimation and large-sample tests for various symmetries, are provided, each type of symmetry being characterized through its harmonics. The paper concludes with a real-data example analyzing the longitudinal sunspot activity.

MSC:

62H10 Multivariate distribution of statistics
62G10 Nonparametric hypothesis testing
62G07 Density estimation
62H15 Hypothesis testing in multivariate analysis
62P35 Applications of statistics to physics
85A25 Radiative transfer in astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1992), Dover Publications Inc.: Dover Publications Inc. New York, Reprint of the 1972 edition · Zbl 0515.33001
[2] Baranyi, T.; Győri, L.; Ludmány, A., On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data, Sol. Phys., 291, 3081-3102 (2016)
[3] Beran, R., Testing for uniformity on a compact homogeneous space, J. Appl. Probab., 5, 177-195 (1968) · Zbl 0174.50203
[4] Beran, R., Exponential models for directional data, Ann. Statist., 1162-1178 (1979) · Zbl 0426.62030
[5] Bingham, C., An antipodally symmetric distribution on the sphere, Ann. Statist., 1201-1225 (1974) · Zbl 0297.62010
[6] Chapman, D. S.; Pollack, H. N., Global heat flow: A new look, Earth Planet. Sci. Lett., 28, 23-32 (1975)
[7] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions (1981), Robert E. Krieger Publishing Co.: Robert E. Krieger Publishing Co. Melbourne, FL · Zbl 0051.30303
[8] Fisher, R. A., Dispersion on a sphere, Proc. R. Soc. A, 217, 295-305 (1953) · Zbl 0051.37105
[9] García-Portugués, E.; Paindaveine, D.; Verdebout, T., On optimal tests for rotational symmetry against new classes of hyperspherical distributions (2017), arXiv preprint arXiv:1706.05030
[10] Genton, M. G.; Castruccio, S.; Crippa, P.; Dutta, S.; Huser, R.; Sun, Y.; Vettori, S., Visuanimation in statistics, Stat, 4, 81-96 (2015)
[11] Giné, E., Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms, Ann. Statist., 3, 1243-1266 (1975) · Zbl 0322.62058
[12] Gyenge, N.; Baranyi, T.; Ludmány, A., Variations of solar non-axisymmetric activity, Central Eur. Astrophys. Bull., 1, 1-16 (2014)
[13] Győri, L.; Ludmány, A.; Baranyi, T., Comparative analysis of Debrecen sunspot catalogues, Mon. Not. R. Astron. Soc., 465, 1259-1273 (2016)
[14] Healy, D. M.; Hendriks, H.; Kim, P. T., Spherical deconvolution, J. Multivariate Anal., 67, 1-22 (1998) · Zbl 1126.62346
[15] Hendriks, H., Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions, Ann. Statist., 18, 832-849 (1990) · Zbl 0711.62036
[16] Jupp, P. E., Data-driven Sobolev tests of uniformity on compact Riemannian manifolds, Ann. Statist., 36, 1246-1260 (2008) · Zbl 1360.62218
[17] Jupp, P. E.; Spurr, B. D., Sobolev tests for symmetry of directional data, Ann. Statist., 11, 1225-1231 (1983) · Zbl 0551.62035
[18] Kazhdan, M.; Chazelle, B.; Dobkin, D.; Funkhouser, T.; Rusinkiewicz, S., A reflective symmetry descriptor for 3D models, Algorithmica, 38, 201-225 (2004) · Zbl 1072.68095
[19] Kim, P. T.; Koo, J.-Y.; Park, H. J., Sharp minimaxity and spherical deconvolution for super-smooth error distributions, J. Multivariate Anal., 90, 384-392 (2004) · Zbl 1134.62336
[20] Korman, S.; Litman, R.; Avidan, S.; Bronstein, A., Probably approximately symmetric: Fast rigid symmetry detection with global guarantees, Comput. Graph. Forum, 34, 2-13 (2015)
[21] de Laat, A. T.J.; van der A, R. J.; van Weele, M., Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a big data approach to multivariate regressions, Atmos. Chem. Phys., 15, 79-97 (2015)
[22] Lacour, C.; Ngoc, T. M.P., Goodness-of-fit test for noisy directional data, Bernoulli, 20, 2131-2168 (2014) · Zbl 1357.62192
[23] Mardia, K. V.; Jupp, P. E., Directional Statistics (2009), Wiley: Wiley New York
[24] Marinucci, D.; Peccati, G., Representations of SO(3) and angular polyspectra, J. Multivariate Anal., 101, 77-100 (2010) · Zbl 1216.60027
[25] Müller, C., Spherical Harmonics (1966), Springer-Verlag: Springer-Verlag Berlin · Zbl 0138.05101
[26] Portugués, E. G.; Verdebout, T., An overview of uniformity tests on the hypersphere (2018), arXiv preprint arXiv:1804.00286
[27] Prentice, M. J., On invariant tests of uniformity for directions and orientations, Ann. Statist., 6, 169-176 (1978) · Zbl 0382.62043
[28] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., Integrals and series, (Special Functions, Translated from the Russian by N.M. Queen, vol. 2 (1988), Gordon & Breach Science Publishers: Gordon & Breach Science Publishers New York) · Zbl 0733.00005
[29] Rao Jammalamadaka, S.; Meintanis, S. G.; Verdebout, T., Omnibus goodness of fit tests for uniformity of circular data (2017), University of California: University of California Santa Barbara, CA
[30] Rao Jammalamadaka, S.; SenGupta, A., Topics in Circular Statistics (2001), World Scientific
[31] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0232.42007
[32] Sun, C.; Sherrah, J., 3D symmetry detection using the extended Gaussian image, IEEE Trans. Pattern Anal. Mach. Intell., 19, 164-168 (1997)
[33] Terdik, Gy. H., Angular spectra for non-Gaussian isotropic fields, Braz. J. Probab. Stat., 29, 833-865 (2015) · Zbl 1328.83219
[34] Terdik, Gy. H.; Rao Jammalamadaka, S.; Wainwright, B., Simulation and visualization of 3D-spherical distributions (2017), University of California: University of California Santa Barbara, CA
[35] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Quantum Theory of Angular Momentum (1988), World Scientific Press
[36] Watson, G. S., Statistics on spheres, (University of Arkansas Lecture Notes in the Mathematical Sciences (1983), Wiley: Wiley New York) · Zbl 0646.62045
[37] Wigner, E. P., Group Theory, and Its Application To the Quantum Mechanics of Atomic Spectra (2012), Elsevier
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.