×

Cohesive and non-cohesive fracture by higher-order enrichment of XFEM. (English) Zbl 1242.74177

Summary: A comprehensive study is performed on the use of higher-order terms of the crack tip asymptotic fields as enriching functions for the eXtended FEM (XFEM) for both cohesive and traction-free cracks. For traction-free cracks, the Williams asymptotic field is used to obtain highly accurate stress intensity factors (SIFs), directly from the enriched degrees of freedom without any post-processing. The low accuracy of the results of the original research on this subject by X. Y. Liu et al. [Int. J. Numer. Methods Eng. 59, No. 8, 1103–1118 (2004; Zbl 1041.74543)] is remedied here by appropriate modifications of the enrichment scheme. The modifications are simple and can be easily included into an XFEM computer code. For cohesive cracks, the relevant asymptotic field is used, and two widely used criteria including the SIFs criterion and the stress criterion are examined for the crack growth simulation. Both linear and nonlinear cohesive laws are used. For the stress criterion, averaging is avoided due to the highly accurate crack tip approximation because of the higher-order enrichment. Then, a modified stress criterion is proposed, which is shown to be applicable to a wider class of problems. Several numerical examples, including straight and curved cracks, stationary and growing cracks, single and multiple cracks, and traction-free and cohesive cracks, are studied to investigate in detailthe robustness and efficiency of the proposed enrichment scheme.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74G70 Stress concentrations, singularities in solid mechanics

Citations:

Zbl 1041.74543

Software:

IML++; SparseLib++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[2] Moës, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[3] Duarte, Generalized finite element methods for three-dimensional structural mechanics problems, Computers & Structures 77 pp 215– (2000) · doi:10.1016/S0045-7949(99)00211-4
[4] Duarte, A high-order generalized FEM for through-the-thickness branched cracks, International Journal for Numerical Methods in Engineering 72 pp 325– (2007) · Zbl 1194.74385 · doi:10.1002/nme.2012
[5] Sukumar, Extended finite element method for three dimensional crack modeling, International Journal for Numerical Methods in Engineering 48 pp 1549– (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[6] Kim, Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes, International Journal for Numerical Methods in Engineering 81 pp 335– (2010) · Zbl 1183.74285
[7] Moës, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics 69 (2) pp 813– (2002) · doi:10.1016/S0013-7944(01)00128-X
[8] Zi, New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering 57 pp 2221– (2003) · Zbl 1062.74633 · doi:10.1002/nme.849
[9] Meschke, Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Computer Methods in Applied Mechanics and Engineering 196 pp 2338– (2007) · Zbl 1173.74384 · doi:10.1016/j.cma.2006.11.016
[10] Duarte, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Computer Methods in Applied Mechanics and Engineering 190 pp 2227– (2001) · Zbl 1047.74056 · doi:10.1016/S0045-7825(00)00233-4
[11] Zamani, Implementation of the extended finite element method for dynamic thermoelastic fracture initiation, International Journal of Solids and Structures 47 pp 1392– (2010) · Zbl 1193.74161 · doi:10.1016/j.ijsolstr.2010.01.024
[12] Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering 75 pp 503– (2008) · Zbl 1195.74173 · doi:10.1002/nme.2259
[13] Gracie, Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods, International Journal for Numerical Methods in Engineering 74 pp 1645– (2008) · Zbl 1195.74175 · doi:10.1002/nme.2217
[14] Ventura, Fast integration and weight function blending in the extended finite element method, International Journal for Numerical Methods in Engineering 77 pp 1– (2009) · Zbl 1195.74201 · doi:10.1002/nme.2387
[15] Park, Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems, International Journal for Numerical Methods in Engineering 78 pp 1220– (2009) · Zbl 1183.74305 · doi:10.1002/nme.2530
[16] Belytschko, A review of extended/generalized finite element methods for material modeling, Modelling and Simulation in Materials Science and Engineering 17 pp 043001– (2009) · doi:10.1088/0965-0393/17/4/043001
[17] Zamani, Embedded interfaces by polytope FEM, International Journal for Numerical Methods in Engineering 88 pp 715– (2011) · Zbl 1242.74176 · doi:10.1002/nme.3193
[18] Oden, The Mathematics of Finite Elements and Applications 96 pp 35– (1997)
[19] Oden, Recent Developments in Computational and Applied Mechanics pp 302– (1997)
[20] Liszka, hp-Meshless cloud method, Computer Methods in Applied Mechanics and Engineering 139 pp 263– (1996) · Zbl 0893.73077 · doi:10.1016/S0045-7825(96)01086-9
[21] Duarte, An h-p adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering 139 pp 237– (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[22] Liu, XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials, International Journal for Numerical Methods in Engineering 59 pp 1103– (2004) · Zbl 1041.74543 · doi:10.1002/nme.906
[23] Yau, A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, Journal of Applied Mechanics 47 pp 335– (1980) · Zbl 0463.73103 · doi:10.1115/1.3153665
[24] Zamani, Second sound in a cracked layer based on Lord-Shulman theory, Journal of Thermal Stresses 34 pp 181– (2011) · doi:10.1080/01495739.2010.545736
[25] Zamani, Higher order tip enrichment of eXtended finite element method in thermoelasticity, Computational Mechanics 46 pp 851– (2010) · Zbl 1344.74062 · doi:10.1007/s00466-010-0520-2
[26] Réthore, Hybrid analytical and extended finite element method (HAX-FEM): a new enrichment procedure for cracked solids, International Journal for Numerical Methods in Engineering 81 pp 269– (2010) · Zbl 1183.74309 · doi:10.1002/nme.2691
[27] Ben Dhia, The Arlequin method as a flexible engineering design tool, International Journal for Numerical Methods in Engineering 62 pp 1442– (2005) · Zbl 1084.74049 · doi:10.1002/nme.1229
[28] Wells, A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering 50 pp 2667– (2001) · Zbl 1013.74074 · doi:10.1002/nme.143
[29] Sukumar, Modeling quasi-static crack growth with the extended finite element method, part I: computer implementation, International Journal of Solids and Structures 40 pp 7513– (2003) · Zbl 1063.74102 · doi:10.1016/j.ijsolstr.2003.08.002
[30] Unger, Modelling of cohesive crack growth in concrete structures with the extended finite element method, Computer Methods in Applied Mechanics and Engineering 196 pp 4087– (2007) · Zbl 1173.74387 · doi:10.1016/j.cma.2007.03.023
[31] Dumstorff, Crack propagation criteria in the framework of X-FEM-based structural analyses, International Journal For Numerical And Analytical Methods In Geomechanics 31 pp 239– (2007) · Zbl 1159.74038 · doi:10.1002/nag.560
[32] Mergheim, A finite element method for the computational modelling of cohesive cracks, International Journal for Numerical Methods in Engineering 63 pp 276– (2005) · Zbl 1118.74349 · doi:10.1002/nme.1286
[33] Xu, Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods, Engineering Fracture Mechanics (2010)
[34] Oliver, Continuum approach to the numerical simulation of material failure in concrete, International Journal For Numerical And Analytical Methods In Geomechanics 28 pp 609– (2004) · Zbl 1112.74493 · doi:10.1002/nag.365
[35] Hetnarski, Thermal Stresses - Advanced Theory and Applications, Solid Mechanics and Its Applications (2009) · Zbl 1165.74004
[36] Belytschko, A coupled finite element-element-free galerkin method, Computational Mechanics 17 pp 186– (1995) · Zbl 0840.73058 · doi:10.1007/BF00364080
[37] Fries TP Mattheis HG Classification and overview of meshfree methods 2004
[38] Béchet, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, International Journal for Numerical Methods in Engineering 64 pp 1033– (2005) · Zbl 1122.74499 · doi:10.1002/nme.1386
[39] Babuska, Stable generalized finite element method (SGFEM), ArXiv e-prints (2011)
[40] Dongarra J Lumsdaine A Pozo R Remington K Iml++ version 1.2: iterative methods library reference guide 1998 http://math.nist.gov/iml++
[41] Pozo R Remington K Lumsdaine A Sparselib++ version 1.7: sparse matrix library 1998 http://math.nist.gov/sparselib++
[42] Williams, On the stress distribution at the base of a stationary crack, Journal of Applied Mechanics 24 pp 109– (1957) · Zbl 0077.37902
[43] Xiao, Asymptotic fields at frictionless and frictional cohesive crack tips in quasibrittle materials, Journal of mechanics of materials and structures 1 (5) (2006) · doi:10.2140/jomms.2006.1.881
[44] Karihaloo, Asymptotic fields at the tip of a cohesive crack, International Journal of Fracture 150 pp 55– (2008) · Zbl 1298.74206 · doi:10.1007/s10704-008-9218-2
[45] Camacho, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures 33 pp 2899– (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[46] Bittencourt, Fracture Mechanics of Concrete Structures pp 339– (1992)
[47] Wilson WK Combined mode fracture mechanics PhD Thesis 1969
[48] Sih, Crack-tip stress intensity factors for plane extension and plane bending problems, Journal of Applied Mechanics 29 pp 306– (1962) · doi:10.1115/1.3640546
[49] Huang, Modeling quasi-static crack growth with the extended finite element method, part II: numerical applications, International Journal of Solids and Structures 40 pp 7539– (2003) · Zbl 1064.74163 · doi:10.1016/j.ijsolstr.2003.08.001
[50] Stazi, An extended finite element method with higher-order elements for curved cracks, Computational Mechanics 31 pp 38– (2003) · Zbl 1038.74651 · doi:10.1007/s00466-002-0391-2
[51] Fleming, Enriched element-free galerkin methods for crack tip fields, International Journal for Numerical Methods in Engineering 40 pp 1483– (1997) · doi:10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[52] Carpinteri, Numerical analysis of catastrophic softening behavior (snap-back instability), Computers & Structures 31 pp 607– (1989) · doi:10.1016/0045-7949(89)90337-4
[53] Xiao, Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM, International Journal for Numerical Methods in Engineering 69 pp 2606– (2007) · Zbl 1194.74483 · doi:10.1002/nme.1866
[54] Winkler BJ Traglastuntersuchungen von unbewehrten und bewehrten betonstrukturen auf der grundlage eines objektiven werkstoffgesetzes für beton PhD Thesis 2001
[55] Bocca, Size effects in the mixed mode crack propagation: softening and snap-back analysis, Engineering Fracture Mechanics 35 pp 159– (1990) · doi:10.1016/0013-7944(90)90193-K
[56] Rabczuk, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering 61 pp 2316– (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[57] Yang, Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods, International Journal of Solids and Structures 41 pp 801– (2004) · Zbl 1075.74622 · doi:10.1016/j.ijsolstr.2003.09.033
[58] Ooi, Modelling multiple cohesive crack propagation using a finite element-scaled boundary finite element coupled method, Engineering Analysis with Boundary Elements 33 pp 915– (2009) · Zbl 1244.74129 · doi:10.1016/j.enganabound.2009.01.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.