×

Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids. (English) Zbl 1312.74058

Summary: A new symmetric boundary integral formulation for cohesive cracks growing in the interior of homogeneous linear elastic isotropic media with a known crack path is developed and implemented in a numerical code. A crack path can be known due to some symmetry implications or the presence of a weak or bonded surface between two solids. The use of a two-dimensional exponential cohesive law and of a special technique for its inclusion in the symmetric Galerkin boundary element method allows us to develop a simple and efficient formulation and implementation of a cohesive zone model. This formulation is dependent on only one variable in the cohesive zone (relative displacement). The corresponding constitutive cohesive equations present a softening branch which induces to the problem a potential instability. The development and implementation of a suitable solution algorithm capable of following the growth of the cohesive zone and subsequent crack growth becomes an important issue. An arc-length control combined with a Newton-Raphson algorithm for iterative solution of nonlinear equations is developed. The boundary element method is very attractive for modeling cohesive crack problems as all nonlinearities are located along the boundaries (including the crack boundaries) of linear elastic domains. A Galerkin approximation scheme, applied to a suitable symmetric integral formulation, ensures an easy treatment of cracks in homogeneous media and excellent convergence behavior of the numerical solution. Numerical results for the wedge split and mixed-mode flexure tests are presented.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74R10 Brittle fracture

Software:

SERBA; BEAN; BDEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech-T ASME 54: 525-532 · Zbl 0626.73010 · doi:10.1115/1.3173064
[2] Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899-2938 · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[3] Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three dimensional crack propagation analysis. Int J Numer Meth Eng 44: 1267-1283 · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[4] Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci 1: 111-132 · doi:10.1088/0965-0393/1/2/001
[5] Chandra N, Shet C (2004) A micromechanistic perspective of cohesive zone approach in modeling fracture. CMES-Comp Model Eng 5(1): 21-34 · Zbl 1103.74350
[6] Bažant Z, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC, Boca Raton
[7] Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. PMM-J Appl Math Mech 23: 622-636 · Zbl 0095.39202 · doi:10.1016/0021-8928(59)90157-1
[8] Hilleborg A, Modéer M, Petersson PE (1976) Analysis of a crack formation and crack growth in concrete by fracture mechanics and finite elements. Cement Concr Res 6: 773-782 · doi:10.1016/0008-8846(76)90007-7
[9] Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques. Springer, Berlin · Zbl 0556.73086 · doi:10.1007/978-3-642-48860-3
[10] París F, Cañas J (1997) Boundary element method, fundamentals and applications. Oxford University Press, Oxford · Zbl 0868.73083
[11] Bonnet M (1999) Boundary integral equation methods for solids and fluids. Wiley, Chichester
[12] Aliabadi MH (2002) The boundary element method vol 2—aplications in solids and structures. Wiley, Chichester
[13] Sutradhar A, Paulino G, Gray L (2008) Symmetric Galerkin boundary element method. Springer, Berlin · Zbl 1156.65101
[14] Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element method. ASME Appl Mech Rev 51(11): 669-704 · doi:10.1115/1.3098983
[15] Wang, Z.; Wu, Q.; Brebbia, CA (ed.), A new approach treating corners in boundary element method, 901-911 (1991), Berlin · doi:10.1007/978-94-011-3696-9_71
[16] Mitra AK, Ingber MS (1993) A new multiple-node method to resolve the difficulties in the BIEM caused by corners and discontinuous boundary conditions. Int J Numer Meth Eng 36: 1735-1746 · Zbl 0775.73323 · doi:10.1002/nme.1620361008
[17] Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Springer, New York · Zbl 1119.65119
[18] Sauter SA, Schwab C (2011) Boundary element methods. Springer, Berlin · Zbl 1215.65183 · doi:10.1007/978-3-540-68093-2
[19] Gray, LJ; Sladek, V. (ed.); Sladek, J. (ed.), Evaluation of singular and hypersingular Galerkin boundary integrals: direct limits and symbolic computation, 33-84 (1998), Southampton
[20] Kitey R, Phan AV, Tippur HV, Kaplan T (2006) Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int J Fract 141(1): 11-25 · Zbl 1197.74190 · doi:10.1007/s10704-006-0047-x
[21] Wriggers P (2002) Computational contact mechanics. Springer, Berlin
[22] Fafard M, Massicotte B (1993) Geometrical interpretation of the arc-length method. Comput Struct 46: 603-615 · Zbl 0773.73100 · doi:10.1016/0045-7949(93)90389-U
[23] Crisfield MA (1997) Non-linear finite element analysis of solids and structures, vol 2. Wiley, Chichester
[24] Ragon SA, Gürdal Z, Watson LT (2002) A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems. Int J Solids Struct 39: 689-698 · Zbl 1011.74043 · doi:10.1016/S0020-7683(01)00195-0
[25] Mallardo V, Alessandri C (2004) Arc-length procedures with BEM in physically nonlinear problems. Eng Anal Bound Elem 28: 547-559 · Zbl 1130.74467 · doi:10.1016/j.enganabound.2003.11.002
[26] Mallardo V (2009) Integral equations and nonlocal damage theory: a numerical implementation using the BDEM. Int J Fract 157: 13-32 · Zbl 1308.74158 · doi:10.1007/s10704-008-9297-0
[27] Yang B, Ravi-Chandar K (1998) A single-domain dual-boundary-element formulation incorporating a cohesive zone model for elastostatic cracks. Int J Fract 22: 381-391
[28] Aliabadi MH, Saleh AL (1998) Fracture mechanics analysis of cracking in plain and reinforced concrete using boundary element method. Eng Fract Mech 93: 115-144 · doi:10.1023/A:1007535407986
[29] Saleh AL, Aliabadi MH (1995) Three-dimensional crack-growth simulation using BEM. Eng Fract Mech 51: 533-545 · doi:10.1016/0013-7944(94)00301-W
[30] Maier G, Novati G, Cen Z (1993) Symmetric boundary element method for quasi-brittle fracture and frictional problems. Comput Mech 13: 74-89 · Zbl 0786.73080
[31] Bolzon G, Fedele R, Maier G (2002) Parameter identification of a cohesive crack model by Kalman filter. Comput Method Appl Meach 13: 74-89 · Zbl 1131.74308
[32] Maier G, Frangi A (1998) Symmetric boundary element method for “discrete” crack modelling of fracture processes. Comput Assist Mech Eng Sci 5: 201-226 · Zbl 0951.74076
[33] Salvadori A (2003) A symmetric boundary integral formulation for cohesive interface problems. Comput Mech 22: 381-391 · Zbl 1038.74668 · doi:10.1007/s00466-003-0495-3
[34] Távara L, Mantič V, Salvadori A, Gray LJ, París F (2010) SGBEM for cohesive cracks in homogeneous media. Key Eng Mater 454: 1-10 · doi:10.4028/www.scientific.net/KEM.454.1
[35] Rizzo FJ (1967) An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math 25: 83-95 · Zbl 0158.43406
[36] Cruse TA (1988) Boundary element analysis in computational fracture mechanics. Kluwer, Boston · Zbl 0648.73039 · doi:10.1007/978-94-009-1385-1
[37] Mantič V, París F (1997) Symmetry properties of the kernels of the hypersingular integral and the corresponding regularized integral in the 2D Somigliana stress identity for isotropic materials. Eng Anal Bound Elem 20: 163-168 · doi:10.1016/S0955-7997(97)00058-1
[38] Sirtori S (1979) General stress analysis method by means of integral equations and boundary elements. Meccanica 14: 210-218 · Zbl 0442.73079 · doi:10.1007/BF02128438
[39] Hartmann F, Katz C, Protopsaltis B (1985) Boundary elements and symmetry. Ingenieur-Archiv 55: 440-449 · Zbl 0573.73094 · doi:10.1007/BF00537652
[40] Maier G, Polizzotto C (1987) A Galerkin approach to boundary element elastoplastic analysis. Comput Method Appl Meach 60: 175-194 · Zbl 0602.73081 · doi:10.1016/0045-7825(87)90108-3
[41] Maier, G.; Novati, G.; Sirtori, S.; Kuhn, G. (ed.); Mang, H. (ed.), On symmetrization in boundary element elastic and elastoplastic analysis, 191-200 (1990), Berlin · Zbl 0728.73086 · doi:10.1007/978-3-642-49373-7_18
[42] Sirtori S, Maier G, Novati G, Miccoli S (1992) A Galerkin symmetric boundary element method in elasticity: formulation and implementation. Int J Numer Meth Eng 35: 255-282 · Zbl 0768.73089 · doi:10.1002/nme.1620350204
[43] Maier, G.; Miccoli, S.; Novati, G.; Sirtori, S.; Kane, JH (ed.); Maier, G. (ed.); Tosaka, N. (ed.); Atluri, SN (ed.), A Galerkin symmetric boundary element method in plasticity: formulation and implementation, 288-328 (1993), Berlin · doi:10.1007/978-3-642-51027-4_15
[44] Salvadori A (2006) Numerical simulations of cohesive interface problems via boundary integral equations. Proceedings of IABEM 2006, Graz
[45] Hölzer SM (1993) How to deal with hypersingular integrals in the symmetric BEM. Commun Numer Meth Eng 9: 219-232 · Zbl 0781.65091 · doi:10.1002/cnm.1640090306
[46] Frangi A, Novati G (1996) Symmetric BE method in two-dimensional elasticity: evaluation of double integrals for curved elements. Comput Mech 19: 58-68 · Zbl 0888.73069 · doi:10.1007/BF02757784
[47] Nintcheu Fata S (2009) Explicit expressions for 3D boundary integrals in potential theory. Int J Numer Meth Eng 78(1): 32-47 · Zbl 1183.65155 · doi:10.1002/nme.2472
[48] Salvadori A (2010) Analytical integrations in 3D BEM for elliptic problems: evaluation and implementation. Int J Numer Meth Eng 84: 505-542 · Zbl 1202.65163
[49] Salvadori A (2002) Analytical integrations in 2D BEM elasticity. Int J Numer Meth Eng 53(7): 1695-1719 · Zbl 1041.74076 · doi:10.1002/nme.359
[50] Salvadori A, Gray L (2007) Analytical integrations and SIFs computation in 2D fracture mechanics. Int J Numer Meth Eng 70: 445-495 · Zbl 1194.74091 · doi:10.1002/nme.1888
[51] Phan AV (2012) A non-singular boundary integral formula for frequency domain analysis of the dynamic T-stress. Int J Fract 173(1): 37-48 · Zbl 1306.74021 · doi:10.1007/s10704-011-9662-2
[52] Ruiz G, Pandolfi A, Ortiz M (2001) Three-dimensional cohesive modeling of dynamic mixed-mode fracture. Int J Numer Meth Eng 52: 97-120 · doi:10.1002/nme.273
[53] Gray LJ, Paulino GH (1997) Symmetric Galerkin boundary integral fracture analysis for plane orthotropic elasticity. Comput Mech 20: 26-33 · Zbl 0887.73070 · doi:10.1007/s004660050212
[54] Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis, vol 1, 5th edn. Oxford Press, Oxford
[55] Remmers JC, Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56: 70-92 · Zbl 1162.74438 · doi:10.1016/j.jmps.2007.08.003
[56] Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15: 529-551 · Zbl 0408.73040 · doi:10.1016/0020-7683(79)90081-7
[57] Ramm, E.; Wunderlich, W. (ed.); Stein, E. (ed.); Bathe, KJ (ed.), Strategies for tracing the non-linear response near limit-points (1981), Berlin
[58] Denarié E, Saouma VE, Iocco A, Varelas D (2001) Concrete fracture process zone characterization with fiber optics. J Eng Mech-ASCE 127(5): 494-502 · doi:10.1061/(ASCE)0733-9399(2001)127:5(494)
[59] Valaroso N, Champaney L (2006) A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Eng Fract Mech 73: 2774-2801 · doi:10.1016/j.engfracmech.2006.04.029
[60] Vodička R, Mantič V, París F (2006) Note on the removal of rigid body motions in the solution of elastostatic traction boundary value problems by SGBEM. Eng Anal Bound Elem 30: 790-798 · Zbl 1195.74267 · doi:10.1016/j.enganabound.2006.04.002
[61] Blázquez A, Mantič V, París F, Cañas J (1996) On the removal of rigid body motions in the solution of elastostatic problems by direct BEM. Int J Numer Meth Eng 39: 4021-4038 · Zbl 0882.73072 · doi:10.1002/(SICI)1097-0207(19961215)39:23<4021::AID-NME36>3.0.CO;2-Q
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.