Sossinsky, A. B. Elementary theory of the Alexander-Conway polynomial. (English) Zbl 07289072 Math. Notes 108, No. 6, 764-766 (2020). MSC: 20F 57M PDF BibTeX XML Cite \textit{A. B. Sossinsky}, Math. Notes 108, No. 6, 764--766 (2020; Zbl 07289072) Full Text: DOI
Shinjo, Reiko; Stoimenow, Alexander Exchange moves and nonconjugate braid representatives of knots. (English) Zbl 07276271 Nagoya Math. J. 240, 298-321 (2020). Reviewer: Dieter Erle (Dortmund) MSC: 57K10 57K14 20F36 PDF BibTeX XML Cite \textit{R. Shinjo} and \textit{A. Stoimenow}, Nagoya Math. J. 240, 298--321 (2020; Zbl 07276271) Full Text: DOI
Conway, Anthony; Estier, Solenn Conway’s potential function via the Gassner representation. (English) Zbl 07240176 Asian J. Math. 24, No. 1, 95-116 (2020). MSC: 20F36 57M25 57M27 PDF BibTeX XML Cite \textit{A. Conway} and \textit{S. Estier}, Asian J. Math. 24, No. 1, 95--116 (2020; Zbl 07240176) Full Text: DOI
Higa, Ryuji An estimation for the ascending numbers of knots by \({\Gamma} \)-polynomials. (English) Zbl 1435.57003 J. Knot Theory Ramifications 29, No. 1, Article ID 1950096, 15 p. (2020). MSC: 57K10 57K14 PDF BibTeX XML Cite \textit{R. Higa}, J. Knot Theory Ramifications 29, No. 1, Article ID 1950096, 15 p. (2020; Zbl 1435.57003) Full Text: DOI
Kogiso, Takeyoshi; Wakui, Michihisa A bridge between Conway-Coxeter friezes and rational tangles through the Kauffman bracket polynomials. (English) Zbl 1436.57009 J. Knot Theory Ramifications 28, No. 14, Article ID 1950083, 40 p. (2019). MSC: 57K10 11A55 13F60 PDF BibTeX XML Cite \textit{T. Kogiso} and \textit{M. Wakui}, J. Knot Theory Ramifications 28, No. 14, Article ID 1950083, 40 p. (2019; Zbl 1436.57009) Full Text: DOI
Zibrowius, Claudius Bodo Kauffman states and Heegaard diagrams for tangles. (English) Zbl 1443.57008 Algebr. Geom. Topol. 19, No. 5, 2233-2282 (2019). Reviewer: Leila Ben Abdelghani (Monastir) MSC: 57K10 57K14 57K18 PDF BibTeX XML Cite \textit{C. B. Zibrowius}, Algebr. Geom. Topol. 19, No. 5, 2233--2282 (2019; Zbl 1443.57008) Full Text: DOI
Higa, Ryuji Ascending number and Conway polynomial. (English) Zbl 1426.57009 J. Knot Theory Ramifications 28, No. 9, Article ID 1950053, 7 p. (2019). MSC: 57K10 57K14 PDF BibTeX XML Cite \textit{R. Higa}, J. Knot Theory Ramifications 28, No. 9, Article ID 1950053, 7 p. (2019; Zbl 1426.57009) Full Text: DOI
Miyazawa, Yasuyuki Links with trivial \(Q\)-polynomial. (English) Zbl 1422.57025 J. Math. Soc. Japan 71, No. 1, 19-42 (2019). Reviewer: Claus Ernst (Bowling Green) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{Y. Miyazawa}, J. Math. Soc. Japan 71, No. 1, 19--42 (2019; Zbl 1422.57025) Full Text: DOI Euclid
Bae, Yongju; Choi, Seonmi; Kim, Seongjeong Generalizations of a Conway algebra for oriented surface-links via marked graph diagrams. (English) Zbl 1406.57004 J. Knot Theory Ramifications 27, No. 13, Article ID 1842014, 26 p. (2018). Reviewer: Inasa Nakamura (Kanazawa) MSC: 57M25 57M27 57Q45 PDF BibTeX XML Cite \textit{Y. Bae} et al., J. Knot Theory Ramifications 27, No. 13, Article ID 1842014, 26 p. (2018; Zbl 1406.57004) Full Text: DOI
Kohli, Ben-Michael The Links-Gould invariant as a classical generalization of the Alexander polynomial? (English) Zbl 1401.57025 Exp. Math. 27, No. 3, 251-264 (2018). MSC: 57M27 PDF BibTeX XML Cite \textit{B.-M. Kohli}, Exp. Math. 27, No. 3, 251--264 (2018; Zbl 1401.57025) Full Text: DOI
Costa, Antonio F.; Hongler, Cam Van Quach Murasugi decomposition and periodic alternating links. (English) Zbl 1396.57006 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 3, 793-802 (2018). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. F. Costa} and \textit{C. Van Q. Hongler}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 3, 793--802 (2018; Zbl 1396.57006) Full Text: DOI
Nakamura, Takuji; Nakanishi, Yasutaka; Satoh, Shin; Yasuhara, Akira The pass move is an unknotting operation for welded knots. (English) Zbl 1397.57014 Topology Appl. 247, 9-19 (2018). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Nakamura} et al., Topology Appl. 247, 9--19 (2018; Zbl 1397.57014) Full Text: DOI
Tuzun, Robert E.; Sikora, Adam S. Verification of the Jones unknot conjecture up to 22 crossings. (English) Zbl 1386.57016 J. Knot Theory Ramifications 27, No. 3, Article ID 1840009, 18 p. (2018). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{R. E. Tuzun} and \textit{A. S. Sikora}, J. Knot Theory Ramifications 27, No. 3, Article ID 1840009, 18 p. (2018; Zbl 1386.57016) Full Text: DOI arXiv
Kim, Seongjeong On the generalization of Conway algebra. (English) Zbl 1385.57016 J. Knot Theory Ramifications 27, No. 2, Article ID 1850014, 20 p. (2018). MSC: 57M27 PDF BibTeX XML Cite \textit{S. Kim}, J. Knot Theory Ramifications 27, No. 2, Article ID 1850014, 20 p. (2018; Zbl 1385.57016) Full Text: DOI arXiv
Takioka, Hideo Infinitely many knots with the trivial \((2, 1)\)-cable \(\Gamma\)-polynomial. (English) Zbl 1386.57015 J. Knot Theory Ramifications 27, No. 2, Article ID 1850013, 18 p. (2018). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{H. Takioka}, J. Knot Theory Ramifications 27, No. 2, Article ID 1850013, 18 p. (2018; Zbl 1386.57015) Full Text: DOI
Jiang, Boju; Wang, Jiajun; Zheng, Hao The skein polynomial for links. (English) Zbl 1372.57015 J. Knot Theory Ramifications 26, No. 6, Article ID 1742003, 14 p. (2017). Reviewer: Kenneth A. Perko Jr. (New York) MSC: 57M25 20F36 PDF BibTeX XML Cite \textit{B. Jiang} et al., J. Knot Theory Ramifications 26, No. 6, Article ID 1742003, 14 p. (2017; Zbl 1372.57015) Full Text: DOI
Conant, J.; Manathunga, V. A. The Conway polynomial and amphicheiral knots. (English) Zbl 1382.57003 J. Knot Theory Ramifications 26, No. 5, Article ID 1750027, 18 p. (2017). Reviewer: Alexander Stoimenow (Gwangju) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{J. Conant} and \textit{V. A. Manathunga}, J. Knot Theory Ramifications 26, No. 5, Article ID 1750027, 18 p. (2017; Zbl 1382.57003) Full Text: DOI
Benheddi, Mounir; Cimasoni, David Link Floer homology categorifies the Conway function. (English) Zbl 1376.57004 Proc. Edinb. Math. Soc., II. Ser. 59, No. 4, 813-836 (2016). Reviewer: Yuanyuan Bao (Tokyo) MSC: 57M25 PDF BibTeX XML Cite \textit{M. Benheddi} and \textit{D. Cimasoni}, Proc. Edinb. Math. Soc., II. Ser. 59, No. 4, 813--836 (2016; Zbl 1376.57004) Full Text: DOI arXiv
Takemura, Atsushi On a relation between Conway polynomials of \((m,n)\)- and \((n,m)\)-Turk’s head links. (English) Zbl 1357.57024 J. Knot Theory Ramifications 25, No. 14, Article ID 1650082, 16 p. (2016). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. Takemura}, J. Knot Theory Ramifications 25, No. 14, Article ID 1650082, 16 p. (2016; Zbl 1357.57024) Full Text: DOI
Przytycki, Józef H. Knots and graphs: two centuries of interaction. (English) Zbl 1357.57020 Gongopadhyay, Krishnendu (ed.) et al., Knot theory and its applications. ICTS program knot theory and its applications (KTH-2013), IISER Mohali, India, December 10–20, 2013. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2257-8/pbk; 978-1-4704-3526-4/ebook). Contemporary Mathematics 670, 171-257 (2016). Reviewer: Kenneth A. Perko jun. (New York) MSC: 57M25 05C10 PDF BibTeX XML Cite \textit{J. H. Przytycki}, Contemp. Math. 670, 171--257 (2016; Zbl 1357.57020) Full Text: DOI
Silvero, Marithania Strongly quasipositive links with braid index 3 have positive Conway polynomial. (English) Zbl 1357.57022 J. Knot Theory Ramifications 25, No. 12, Article ID 1642015, 14 p. (2016). Reviewer: Kenneth A. Perko jun. (New York) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{M. Silvero}, J. Knot Theory Ramifications 25, No. 12, Article ID 1642015, 14 p. (2016; Zbl 1357.57022) Full Text: DOI arXiv
Tao, Zhi-Xiong 2-adjacency between pretzel links and the trivial link. (English) Zbl 1357.57025 Topology Appl. 214, 186-191 (2016). MSC: 57M25 PDF BibTeX XML Cite \textit{Z.-X. Tao}, Topology Appl. 214, 186--191 (2016; Zbl 1357.57025) Full Text: DOI
Tao, Zhixiong On 2-adjacency between links. (English) Zbl 1350.57014 Chin. Ann. Math., Ser. B 37, No. 5, 767-776 (2016). MSC: 57M25 PDF BibTeX XML Cite \textit{Z. Tao}, Chin. Ann. Math., Ser. B 37, No. 5, 767--776 (2016; Zbl 1350.57014) Full Text: DOI
Ham, Ji-Young; Lee, Joongul An explicit formula for the \(A\)-polynomial of the knot with Conway’s notation \(C(2n,3)\). (English) Zbl 1351.57019 J. Knot Theory Ramifications 25, No. 10, Article ID 1650057, 9 p. (2016). Reviewer: Leila Ben Abdelghani (Monastir) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{J.-Y. Ham} and \textit{J. Lee}, J. Knot Theory Ramifications 25, No. 10, Article ID 1650057, 9 p. (2016; Zbl 1351.57019) Full Text: DOI arXiv
Lê, Thang T. Q.; Lescop, Christine; Lipshitz, Robert; Turner, Paul Lectures on quantum topology in dimension three. Lectures of the SMF school “Geometric and quantum topology in dimension 3”, CIRM, Luminy, France, June 2014. (English) Zbl 1360.57003 Panoramas et Synthèses 48. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-842-8/pbk). x, 174 p. (2016). Reviewer: Dieter Erle (Dortmund) MSC: 57-02 57M27 57-06 57M25 57N10 55N35 81T45 00B15 20F36 18G40 53C15 53D05 32Q60 20C30 PDF BibTeX XML Cite \textit{T. T. Q. Lê} et al., Lectures on quantum topology in dimension three. Lectures of the SMF school ``Geometric and quantum topology in dimension 3'', CIRM, Luminy, France, June 2014. Paris: Société Mathématique de France (SMF) (2016; Zbl 1360.57003)
Kauffman, Louis H.; Silvero, Marithania Alexander-Conway polynomial state model and link homology. (English) Zbl 1336.57010 J. Knot Theory Ramifications 25, No. 3, Article ID 1640005, 8 p. (2016). MSC: 57M25 PDF BibTeX XML Cite \textit{L. H. Kauffman} and \textit{M. Silvero}, J. Knot Theory Ramifications 25, No. 3, Article ID 1640005, 8 p. (2016; Zbl 1336.57010) Full Text: DOI arXiv
Tsau, Chichen M. On the topology of the coefficients of the Alexander-Conway polynomials of knots. (English) Zbl 1339.57022 J. Knot Theory Ramifications 25, No. 2, Article ID 1650008, 13 p. (2016). Reviewer: Jessica Banks (Hull) MSC: 57M27 PDF BibTeX XML Cite \textit{C. M. Tsau}, J. Knot Theory Ramifications 25, No. 2, Article ID 1650008, 13 p. (2016; Zbl 1339.57022) Full Text: DOI
Kohli, Ben-Michael On the Links-Gould invariant and the square of the Alexander polynomial. (English) Zbl 1378.57022 J. Knot Theory Ramifications 25, No. 2, Article ID 1650006, 25 p. (2016). Reviewer: Qi Chen (Winston-Salem) MSC: 57M27 17B37 PDF BibTeX XML Cite \textit{B.-M. Kohli}, J. Knot Theory Ramifications 25, No. 2, Article ID 1650006, 25 p. (2016; Zbl 1378.57022) Full Text: DOI arXiv
Jiang, Bo Ju On Conway’s potential function for colored links. (English) Zbl 1337.57025 Acta Math. Sin., Engl. Ser. 32, No. 1, 25-39 (2016). MSC: 57M25 20F36 PDF BibTeX XML Cite \textit{B. J. Jiang}, Acta Math. Sin., Engl. Ser. 32, No. 1, 25--39 (2016; Zbl 1337.57025) Full Text: DOI
Stoimenow, Alexander Everywhere equivalent 2-component links. (English) Zbl 1373.57026 Symmetry 7, No. 2, 365-375 (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{A. Stoimenow}, Symmetry 7, No. 2, 365--375 (2015; Zbl 1373.57026) Full Text: DOI
Stoimenow, A. Minimal genus of links and fibering of canonical surfaces. (English) Zbl 1342.57011 Ill. J. Math. 59, No. 2, 399-448 (2015). Reviewer: Kenneth A. Perko jun. (New York) MSC: 57M25 57Q45 57N10 53D10 57M15 PDF BibTeX XML Cite \textit{A. Stoimenow}, Ill. J. Math. 59, No. 2, 399--448 (2015; Zbl 1342.57011) Full Text: Euclid
Uchida, Yoshiaki Delta-unknotting operations and ordinary unknotting operations. (English) Zbl 1330.57018 Topology Appl. 196, Part B, 1019-1022 (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Uchida}, Topology Appl. 196, Part B, 1019--1022 (2015; Zbl 1330.57018) Full Text: DOI
Tao, Zhi-Xiong 2-adjacency between knots. (English) Zbl 1327.57013 J. Knot Theory Ramifications 24, No. 11, Article ID 1550054, 18 p. (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{Z.-X. Tao}, J. Knot Theory Ramifications 24, No. 11, Article ID 1550054, 18 p. (2015; Zbl 1327.57013) Full Text: DOI
Kitayama, Takahiro Normalization of twisted Alexander invariants. (English) Zbl 1339.57012 Int. J. Math. 26, No. 10, Article ID 1550077, 21 p. (2015). Reviewer: Dieter Erle (Dortmund) MSC: 57M25 57M27 57M05 57Q10 PDF BibTeX XML Cite \textit{T. Kitayama}, Int. J. Math. 26, No. 10, Article ID 1550077, 21 p. (2015; Zbl 1339.57012) Full Text: DOI arXiv
Taşköprü, Kemal; Altıntaş, Ismet HOMFLY polynomials of torus links as generalized Fibonacci polynomials. (English) Zbl 1326.57022 Electron. J. Comb. 22, No. 4, Research Paper P4.8, 17 p. (2015). MSC: 57M25 11B39 11C08 PDF BibTeX XML Cite \textit{K. Taşköprü} and \textit{I. Altıntaş}, Electron. J. Comb. 22, No. 4, Research Paper P4.8, 17 p. (2015; Zbl 1326.57022) Full Text: Link
Koseleff, Pierre-Vincent; Pecker, Daniel On Alexander-Conway polynomials of two-bridge links. (English) Zbl 1305.57015 J. Symb. Comput. 68, Part 2, 215-229 (2015). MSC: 57M25 11C08 PDF BibTeX XML Cite \textit{P.-V. Koseleff} and \textit{D. Pecker}, J. Symb. Comput. 68, Part 2, 215--229 (2015; Zbl 1305.57015) Full Text: DOI
Kadokami, Teruhisa; Kawamura, Kengo An infinite family of prime knots with a certain property for the clasp number. (English) Zbl 1314.57006 J. Knot Theory Ramifications 23, No. 13, Article ID 1450071, 14 p. (2014). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Kadokami} and \textit{K. Kawamura}, J. Knot Theory Ramifications 23, No. 13, Article ID 1450071, 14 p. (2014; Zbl 1314.57006) Full Text: DOI arXiv
Tao, Zhi-Xiong On knot 2-adjacency. (English) Zbl 1311.57014 Topology Appl. 172, 72-78 (2014). Reviewer: Jun Ge (Xiamen) MSC: 57M25 PDF BibTeX XML Cite \textit{Z.-X. Tao}, Topology Appl. 172, 72--78 (2014; Zbl 1311.57014) Full Text: DOI
Brandenbursky, Michael Coloring link diagrams and Conway-type polynomial of braids. (English) Zbl 1290.57019 Topology Appl. 161, 141-158 (2014). Reviewer: Claus Ernst (Bowling Green) MSC: 57M27 PDF BibTeX XML Cite \textit{M. Brandenbursky}, Topology Appl. 161, 141--158 (2014; Zbl 1290.57019) Full Text: DOI arXiv
Tao, Zhi-Xiong On 2-adjacency of classical pretzel knots. (English) Zbl 1280.57010 J. Knot Theory Ramifications 22, No. 11, Article ID 1350066, 13 p. (2013). MSC: 57M25 PDF BibTeX XML Cite \textit{Z.-X. Tao}, J. Knot Theory Ramifications 22, No. 11, Article ID 1350066, 13 p. (2013; Zbl 1280.57010) Full Text: DOI
Emmes, David An expression for the Homflypt polynomial and some applications. (English) Zbl 1304.57014 Topology Appl. 160, No. 16, 2069-2087 (2013). Reviewer: Alexander Stoimenow (Gwangju) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{D. Emmes}, Topology Appl. 160, No. 16, 2069--2087 (2013; Zbl 1304.57014) Full Text: DOI arXiv
Kauffman, Louis H.; Jablan, Slavik; Radović, Ljiljana; Sazdanović, Radmila Reduced relative Tutte, Kauffman bracket and Jones polynomials of virtual link families. (English) Zbl 1266.05069 J. Knot Theory Ramifications 22, No. 4, Article ID 1340003, 21 p. (2013). MSC: 05C31 57M25 57M27 PDF BibTeX XML Cite \textit{L. H. Kauffman} et al., J. Knot Theory Ramifications 22, No. 4, Article ID 1340003, 21 p. (2013; Zbl 1266.05069) Full Text: DOI
Kauffman, Louis H. Knots and physics. 4th ed. (English) Zbl 1266.57001 Series on Knots and Everything 53. Singapore: World Scientific (ISBN 978-981-4383-00-4/hbk; 978-981-4383-01-1/pbk). xviii, 846 p. (2013). Reviewer: Claus Ernst (Bowling Green) MSC: 57-01 81-01 57M25 57M15 57Q35 81R10 81R25 92D20 17B37 16W99 94C99 PDF BibTeX XML Cite \textit{L. H. Kauffman}, Knots and physics. 4th ed. Singapore: World Scientific (2013; Zbl 1266.57001)
González Manchón, Pedro M. Homogeneous links and the Seifert matrix. (English) Zbl 1255.57007 Pac. J. Math. 255, No. 2, 373-392 (2012). Reviewer: Shigeaki Miyoshi (Tokyo) MSC: 57M25 57M27 57M15 PDF BibTeX XML Cite \textit{P. M. González Manchón}, Pac. J. Math. 255, No. 2, 373--392 (2012; Zbl 1255.57007) Full Text: DOI Link
Duzhin, S. V. Conway polynomial and Magnus expansion. (English. Russian original) Zbl 1247.57015 St. Petersbg. Math. J. 23, No. 3, 541-550 (2012); translation from Algebra Anal. 23, No. 3, 175-188 (2011). Reviewer: Lee P. Neuwirth (Princeton) MSC: 57M27 20F36 57M25 PDF BibTeX XML Cite \textit{S. V. Duzhin}, St. Petersbg. Math. J. 23, No. 3, 541--550 (2012; Zbl 1247.57015); translation from Algebra Anal. 23, No. 3, 175--188 (2011) Full Text: DOI arXiv
Ermotti, Nicola; Van Quach Hongler, Cam; Weber, Claude On a generalization of the Kawauchi conjecture about the Conway polynomial of achiral knots. (English) Zbl 1242.57003 J. Knot Theory Ramifications 21, No. 9, 1250092, 9 p. (2012). MSC: 57M25 PDF BibTeX XML Cite \textit{N. Ermotti} et al., J. Knot Theory Ramifications 21, No. 9, 1250092, 9 p. (2012; Zbl 1242.57003) Full Text: DOI arXiv
Kanenobu, Taizo Band surgery on knots and links, II. (English) Zbl 1246.57017 J. Knot Theory Ramifications 21, No. 9, 1250086, 22 p. (2012). Reviewer: Claus Ernst (Bowling Green) MSC: 57M25 57M27 92D10 PDF BibTeX XML Cite \textit{T. Kanenobu}, J. Knot Theory Ramifications 21, No. 9, 1250086, 22 p. (2012; Zbl 1246.57017) Full Text: DOI
Nakamura, Takuji; Nakanishi, Yasutaka Notes on sharp moves for knots. (English) Zbl 1239.57023 J. Knot Theory Ramifications 21, No. 7, 1250068, 20 p. (2012). MSC: 57M25 PDF BibTeX XML Cite \textit{T. Nakamura} and \textit{Y. Nakanishi}, J. Knot Theory Ramifications 21, No. 7, 1250068, 20 p. (2012; Zbl 1239.57023) Full Text: DOI
Lizárraga-Navarro, David A.; Cabrera-Ibarra, Hugo; Hernández-Villegas, Leila Y. Computing the Conway polynomial of several closures of oriented 3-braids. (English) Zbl 1251.57010 Topology Appl. 159, No. 4, 1195-1209 (2012). Reviewer: Lorena Armas-Sanabria (México D. F.) MSC: 57M25 57M27 20F36 PDF BibTeX XML Cite \textit{D. A. Lizárraga-Navarro} et al., Topology Appl. 159, No. 4, 1195--1209 (2012; Zbl 1251.57010) Full Text: DOI
Kanenobu, Taizo; Sugita, Kaori Finite type invariants of order 3 for a spatial handcuff graph. (English) Zbl 1239.57019 Topology Appl. 159, No. 4, 966-979 (2012). MSC: 57M25 57M15 57M27 PDF BibTeX XML Cite \textit{T. Kanenobu} and \textit{K. Sugita}, Topology Appl. 159, No. 4, 966--979 (2012; Zbl 1239.57019) Full Text: DOI
Ichihara, Kazuhiro; Jong, In Dae Gromov hyperbolicity and a variation of the Gordian complex. (English) Zbl 1218.57006 Proc. Japan Acad., Ser. A 87, No. 2, 17-21 (2011). MSC: 57M25 PDF BibTeX XML Cite \textit{K. Ichihara} and \textit{I. D. Jong}, Proc. Japan Acad., Ser. A 87, No. 2, 17--21 (2011; Zbl 1218.57006) Full Text: DOI arXiv
Przytycki, Józef H. From Goeritz matrices to quasi-alternating links. (English) Zbl 1221.57010 Banagl, Markus (ed.) et al., The mathematics of knots. Theory and application. Berlin: Springer (ISBN 978-3-642-15636-6/hbk; 978-3-642-15637-3/ebook). Contributions in Mathematical and Computational Sciences 1, 257-316 (2011). Reviewer: Claus Ernst (Bowling Green) MSC: 57M25 57-03 01A60 PDF BibTeX XML Cite \textit{J. H. Przytycki}, Contrib. Math. Comput. Sci. 1, 257--316 (2011; Zbl 1221.57010) Full Text: DOI
Jablan, Slavik; Radović, Ljiljana; Sazdanović, Radmila Tutte and Jones polynomials of link families. (English) Zbl 1265.05307 Filomat 24, No. 3, 19-33 (2010). MSC: 05C31 57M25 57M27 PDF BibTeX XML Cite \textit{S. Jablan} et al., Filomat 24, No. 3, 19--33 (2010; Zbl 1265.05307) Full Text: DOI
Koseleff, P.-V.; Pecker, D. On Fibonacci knots. (English) Zbl 1213.57012 Fibonacci Q. 48, No. 2, 137-143 (2010). Reviewer: Claus Ernst (Bowling Green) MSC: 57M25 11A55 11B39 PDF BibTeX XML Cite \textit{P. V. Koseleff} and \textit{D. Pecker}, Fibonacci Q. 48, No. 2, 137--143 (2010; Zbl 1213.57012) Full Text: Link
Shinjo, Reiko Non-conjugate braids whose closures result in the same knot. (English) Zbl 1184.57008 J. Knot Theory Ramifications 19, No. 1, 117-124 (2010). MSC: 57M25 57M27 20F36 PDF BibTeX XML Cite \textit{R. Shinjo}, J. Knot Theory Ramifications 19, No. 1, 117--124 (2010; Zbl 1184.57008) Full Text: DOI
Miyazawa, Haruko Aida \(SC_n\)-moves and the \((n+1)\)-st coefficients of the Conway polynomials of links. (English) Zbl 1197.57010 Tokyo J. Math. 32, No. 2, 395-408 (2009). Reviewer: Lorenzo Traldi (Easton) MSC: 57M25 PDF BibTeX XML Cite \textit{H. A. Miyazawa}, Tokyo J. Math. 32, No. 2, 395--408 (2009; Zbl 1197.57010) Full Text: DOI
Nakanishi, Yasutaka; Ohyma, Yoshiyuki The Gordian complex with pass moves is not homogeneous with respect to Conway polynomials. (English) Zbl 1205.57013 Hiroshima Math. J. 39, No. 3, 443-450 (2009). Reviewer: Cynthia L. Curtis (Ewing) MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Nakanishi} and \textit{Y. Ohyma}, Hiroshima Math. J. 39, No. 3, 443--450 (2009; Zbl 1205.57013)
Morton, H. R.; Ryder, N. Invariants of genus 2 mutants. (English) Zbl 1183.57008 J. Knot Theory Ramifications 18, No. 10, 1423-1438 (2009). Reviewer: Masakazu Teragaito (Hiroshima) MSC: 57M25 PDF BibTeX XML Cite \textit{H. R. Morton} and \textit{N. Ryder}, J. Knot Theory Ramifications 18, No. 10, 1423--1438 (2009; Zbl 1183.57008) Full Text: DOI arXiv
Nikkuni, Ryo A refinement of the Conway-Gordon theorems. (English) Zbl 1185.57003 Topology Appl. 156, No. 17, 2782-2794 (2009). Reviewer: Iain Moffatt (Mobile, AL) MSC: 57M15 57M25 05C10 PDF BibTeX XML Cite \textit{R. Nikkuni}, Topology Appl. 156, No. 17, 2782--2794 (2009; Zbl 1185.57003) Full Text: DOI arXiv
Chmutov, Sergei; Khoury, Michael Cap; Rossi, Alfred Polyak-Viro formulas for coefficients of the Conway polynomial. (English) Zbl 1195.57026 J. Knot Theory Ramifications 18, No. 6, 773-783 (2009). Reviewer: Kazuo Habiro (Kyoto) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{S. Chmutov} et al., J. Knot Theory Ramifications 18, No. 6, 773--783 (2009; Zbl 1195.57026) Full Text: DOI arXiv
Ishii, Atsushi Smoothing resolution for the Alexander-Conway polynomial. (English) Zbl 1188.57008 Acta Math. Vietnam. 33, No. 3, 321-333 (2008). Reviewer: Claus Ernst (Bowling Green) MSC: 57M27 PDF BibTeX XML Cite \textit{A. Ishii}, Acta Math. Vietnam. 33, No. 3, 321--333 (2008; Zbl 1188.57008)
Ohyama, Yoshiyuki; Yamada, Harumi A \(C_n\)-move for a knot and the coefficients of the Conway polynomial. (English) Zbl 1149.57012 J. Knot Theory Ramifications 17, No. 7, 771-785 (2008). MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Ohyama} and \textit{H. Yamada}, J. Knot Theory Ramifications 17, No. 7, 771--785 (2008; Zbl 1149.57012) Full Text: DOI
Lee, Sang Youl; Seo, Myoungsoo A formula for the delta-unknotting numbers of knots. (English) Zbl 1155.57007 Int. J. Math. 19, No. 3, 323-338 (2008). Reviewer: Joel Foisy (Potsdam/New York) MSC: 57M25 PDF BibTeX XML Cite \textit{S. Y. Lee} and \textit{M. Seo}, Int. J. Math. 19, No. 3, 323--338 (2008; Zbl 1155.57007) Full Text: DOI
Chbili, Nafaa Strong periodicity of links and the coefficients of the Conway polynomial. (English) Zbl 1144.57003 Proc. Am. Math. Soc. 136, No. 6, 2217-2224 (2008). MSC: 57M25 PDF BibTeX XML Cite \textit{N. Chbili}, Proc. Am. Math. Soc. 136, No. 6, 2217--2224 (2008; Zbl 1144.57003) Full Text: DOI arXiv
Murasugi, Kunio Knot theory and its applications. Transl. from the Japanese by Bohdan Kurpita. Reprint of the 1996 translated edition. (English) Zbl 1138.57001 Modern Birkhäuser Classics. Basel: Birkhäuser (ISBN 978-0-8176-4718-6/pbk). xii, 342 p. (2008). Reviewer: Claus Ernst (Bowling Green) MSC: 57-01 57M25 57N10 PDF BibTeX XML Cite \textit{K. Murasugi}, Knot theory and its applications. Transl. from the Japanese by Bohdan Kurpita. Reprint of the 1996 translated edition. Basel: Birkhäuser (2008; Zbl 1138.57001)
Viro, O. Ya. Quantum relatives of the Alexander polynomial. (English. Russian original) Zbl 1149.57024 St. Petersbg. Math. J. 18, No. 3, 391-457 (2007); translation from Algebra Anal. 18, No. 3, 63-157 (2006). Reviewer: Leonid Plachta (Gdansk) MSC: 57M27 57M25 17B37 PDF BibTeX XML Cite \textit{O. Ya. Viro}, St. Petersbg. Math. J. 18, No. 3, 391--457 (2007; Zbl 1149.57024); translation from Algebra Anal. 18, No. 3, 63--157 (2006) Full Text: DOI
Cimasoni, David; Turaev, Vladimir A generalization of several classical invariants of links. (English) Zbl 1148.57005 Osaka J. Math. 44, No. 3, 531-561 (2007). Reviewer: Ostap M. Davydov (Chelyabinsk) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{D. Cimasoni} and \textit{V. Turaev}, Osaka J. Math. 44, No. 3, 531--561 (2007; Zbl 1148.57005) Full Text: Euclid arXiv
Tsukamoto, Tatsuya; Yasuhara, Akira A factorization of the Conway polynomial and covering linkage invariants. (English) Zbl 1119.57005 J. Knot Theory Ramifications 16, No. 5, 631-640 (2007). Reviewer: Alessia Cattabringa (Bologna) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{T. Tsukamoto} and \textit{A. Yasuhara}, J. Knot Theory Ramifications 16, No. 5, 631--640 (2007; Zbl 1119.57005) Full Text: DOI arXiv
Kim, Dongseok; Lee, Jaeun Some invariants of Pretzel links. (English) Zbl 1119.57002 Bull. Aust. Math. Soc. 75, No. 2, 253-271 (2007). Reviewer: Alessia Cattabringa (Bologna) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{D. Kim} and \textit{J. Lee}, Bull. Aust. Math. Soc. 75, No. 2, 253--271 (2007; Zbl 1119.57002) Full Text: DOI arXiv
Geer, Nathan; Patureau-Mirand, Bertrand Multivariable link invariants arising from \(\mathfrak {sl}(2|1)\) and the Alexander polynomial. (English) Zbl 1121.57005 J. Pure Appl. Algebra 210, No. 1, 283-298 (2007). Reviewer: Stephane Baseilhac (Saint-Martin d’Hères) MSC: 57M27 17B37 PDF BibTeX XML Cite \textit{N. Geer} and \textit{B. Patureau-Mirand}, J. Pure Appl. Algebra 210, No. 1, 283--298 (2007; Zbl 1121.57005) Full Text: DOI arXiv
Piwocki, Adam H. The determinant of oriented rotants. (English) Zbl 1113.57004 Colloq. Math. 108, No. 2, 183-191 (2007). MSC: 57M27 PDF BibTeX XML Cite \textit{A. H. Piwocki}, Colloq. Math. 108, No. 2, 183--191 (2007; Zbl 1113.57004) Full Text: DOI
Altun, Yılmaz The Jones polynomial of twist knots. (English) Zbl 1137.57300 Int. J. Math. Game Theory Algebra 15, No. 1, 21-26 (2006). MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Altun}, Int. J. Math. Game Theory Algebra 15, No. 1, 21--26 (2006; Zbl 1137.57300)
Conant, James Chirality and the Conway polynomial. (English) Zbl 1123.57009 Topol. Proc. 30, No. 1, 153-162 (2006). Reviewer: Alessia Cattabringa (Bologna) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{J. Conant}, Topol. Proc. 30, No. 1, 153--162 (2006; Zbl 1123.57009) Full Text: arXiv
Li, Weiping; Zhang, Weiping An \(L^2\)-Alexander-Conway invariant for knots and the volume conjecture. (English) Zbl 1131.57015 Ge, Mo-Lin (ed.) et al., Differential geometry and physics. Proceedings of the 23rd international conference of differential geometric methods in theoretical physics, Tianjin, China, August 20–26, 2005. Hackensack, NJ: World Scientific (ISBN 978-981-270-377-4/hbk). Nankai Tracts in Mathematics 10, 303-312 (2006). Reviewer: Stephane Baseilhac (Saint-Martin d’Hères) MSC: 57M27 57M25 58J52 46L99 PDF BibTeX XML Cite \textit{W. Li} and \textit{W. Zhang}, Nankai Tracts Math. 10, 303--312 (2006; Zbl 1131.57015)
Nakanishi, Yasutaka; Ohyama, Yoshiyuki Local moves and Gordian complexes. (English) Zbl 1122.57003 J. Knot Theory Ramifications 15, No. 9, 1215-1224 (2006). Reviewer: Kazuo Habiro (Kyoto) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{Y. Nakanishi} and \textit{Y. Ohyama}, J. Knot Theory Ramifications 15, No. 9, 1215--1224 (2006; Zbl 1122.57003) Full Text: DOI
Nicas, Andrew Combinatorial identities in the theory of \(\text{SU}(n)\) Casson invariants of knots. (English) Zbl 1109.05021 Pure Appl. Math. Q. 2, No. 3, 795-816 (2006). Reviewer: Maria Rita Casali (Modena) MSC: 05A19 14D20 57M25 PDF BibTeX XML Cite \textit{A. Nicas}, Pure Appl. Math. Q. 2, No. 3, 795--816 (2006; Zbl 1109.05021) Full Text: DOI
Nakanishi, Yasutaka; Ohyama, Yoshiyuki Knots with given finite type invariants and Conway polynomial. (English) Zbl 1103.57010 J. Knot Theory Ramifications 15, No. 2, 205-215 (2006). Reviewer: V. P. Lexin (Kolomna) MSC: 57M27 57M25 57-02 PDF BibTeX XML Cite \textit{Y. Nakanishi} and \textit{Y. Ohyama}, J. Knot Theory Ramifications 15, No. 2, 205--215 (2006; Zbl 1103.57010) Full Text: DOI
Stoimenow, Alexander Newton-like polynomials of links. (English) Zbl 1117.57007 Enseign. Math. (2) 51, No. 3-4, 211-230 (2005). Reviewer: Luisa Paoluzzi (Dijon) MSC: 57M25 PDF BibTeX XML Cite \textit{A. Stoimenow}, Enseign. Math. (2) 51, No. 3--4, 211--230 (2005; Zbl 1117.57007)
Tsutsumi, Yasuyoshi The Casson invariant of the cyclic covering branched over some satellite knot. (English) Zbl 1089.57012 J. Knot Theory Ramifications 14, No. 8, 1029-1044 (2005). Reviewer: Alberto Cavicchioli (Modena) MSC: 57M27 57M25 57M12 PDF BibTeX XML Cite \textit{Y. Tsutsumi}, J. Knot Theory Ramifications 14, No. 8, 1029--1044 (2005; Zbl 1089.57012) Full Text: DOI
De Wit, David; Ishii, Atsushi; Links, Jon Infinitely many two-variable generalisations of the Alexander-Conway polynomial. (English) Zbl 1079.57004 Algebr. Geom. Topol. 5, 405-418 (2005). Reviewer: Earl J. Taft (New Brunswick) MSC: 57M25 57M27 17B37 PDF BibTeX XML Cite \textit{D. De Wit} et al., Algebr. Geom. Topol. 5, 405--418 (2005; Zbl 1079.57004) Full Text: DOI EMIS EuDML arXiv
Melikhov, Sergey A.; Repovš, Dušan \(n\)-quasi-isotopy. II: Comparison. (English) Zbl 1080.57011 J. Knot Theory Ramifications 14, No. 5, 603-626 (2005). Reviewer: Maria Rita Casali (Modena) MSC: 57M25 57Q37 57Q60 PDF BibTeX XML Cite \textit{S. A. Melikhov} and \textit{D. Repovš}, J. Knot Theory Ramifications 14, No. 5, 603--626 (2005; Zbl 1080.57011) Full Text: DOI
Fukuhara, Shinji Explicit formulae for two-bridge knot polynomials. (English) Zbl 1077.57010 J. Aust. Math. Soc. 78, No. 2, 149-166 (2005). Reviewer: Lorenzo Traldi (Easton) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{S. Fukuhara}, J. Aust. Math. Soc. 78, No. 2, 149--166 (2005; Zbl 1077.57010) Full Text: DOI
Traczyk, Pawel Conway polynomial and oriented rotant links. (English) Zbl 1081.57007 Geom. Dedicata 110, 49-61 (2005). Reviewer: Luigi Grasselli (Reggio Emilia) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{P. Traczyk}, Geom. Dedicata 110, 49--61 (2005; Zbl 1081.57007) Full Text: DOI
Zhao, Xianzhong Locally closed semirings and iteration semirings. (English) Zbl 1072.16041 Monatsh. Math. 144, No. 2, 157-167 (2005). Reviewer: Udo Hebisch (Freiberg) MSC: 16Y60 68Q70 20M07 PDF BibTeX XML Cite \textit{X. Zhao}, Monatsh. Math. 144, No. 2, 157--167 (2005; Zbl 1072.16041) Full Text: DOI
Dąbkowski, Mieczysław K.; Ishiwata, Makiko; Przytycki, Józef H.; Yasuhara, Akira Signature of rotors. (English) Zbl 1079.57007 Fundam. Math. 184, 79-97 (2004). Reviewer: Hitoshi Murakami (Tokyo) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{M. K. Dąbkowski} et al., Fundam. Math. 184, 79--97 (2004; Zbl 1079.57007) Full Text: DOI
Jeong, Myeong-Ju; Kim, Eun-Jin; Park, Chan-Young Twist moves and Vassiliev invariants. (English) Zbl 1066.57017 J. Knot Theory Ramifications 13, No. 6, 719-735 (2004). Reviewer: Kazuo Habiro (Kyoto) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{M.-J. Jeong} et al., J. Knot Theory Ramifications 13, No. 6, 719--735 (2004; Zbl 1066.57017) Full Text: DOI
Shibuya, Tetsuo; Yasuhara, Akira Self \(C_k\)-move, quasi self \(C_k\)-move and the Conway potential function for links. (English) Zbl 1095.57009 J. Knot Theory Ramifications 13, No. 7, 877-893 (2004). Reviewer: Yoshiyuki Ohyama (Tokyo) MSC: 57M25 PDF BibTeX XML Cite \textit{T. Shibuya} and \textit{A. Yasuhara}, J. Knot Theory Ramifications 13, No. 7, 877--893 (2004; Zbl 1095.57009) Full Text: DOI
Cromwell, Peter R. Knots and links. (English) Zbl 1066.57007 Cambridge: Cambridge University Press (ISBN 0-521-54831-4/pbk; 0-521-83947-5/hbk). xvii, 328 . (2004). Reviewer: Cynthia L. Curtis (Ewing) MSC: 57M25 57-01 PDF BibTeX XML Cite \textit{P. R. Cromwell}, Knots and links. Cambridge: Cambridge University Press (2004; Zbl 1066.57007)
Cao, Ke-Fei; Zhang, Chuan; Peng, Shou-Li Topological entropy, knots and star products. (English) Zbl 1064.37011 Grazer Math. Ber. 346, 61-72 (2004). Reviewer: Klaudiusz Wójcik (Kraków) MSC: 37B10 57M27 37B40 PDF BibTeX XML Cite \textit{K.-F. Cao} et al., Grazer Math. Ber. 346, 61--72 (2004; Zbl 1064.37011)
Ozsváth, Peter; Szabó, Zoltán Holomorphic disks and knot invariants. (English) Zbl 1062.57019 Adv. Math. 186, No. 1, 58-116 (2004). Reviewer: Claus Ernst (Bowling Green) MSC: 57M27 57R58 PDF BibTeX XML Cite \textit{P. Ozsváth} and \textit{Z. Szabó}, Adv. Math. 186, No. 1, 58--116 (2004; Zbl 1062.57019) Full Text: DOI Backlinks: MO
Quach Hongler, Cam Van; Weber, Claude On the topological invariance of Murasugi special components of an alternating link. (English) Zbl 1057.57007 Math. Proc. Camb. Philos. Soc. 137, No. 1, 95-108 (2004). Reviewer: Hitoshi Murakami (Tokyo) MSC: 57M25 PDF BibTeX XML Cite \textit{C. Van Quach Hongler} and \textit{C. Weber}, Math. Proc. Camb. Philos. Soc. 137, No. 1, 95--108 (2004; Zbl 1057.57007) Full Text: DOI
Tsutsumi, Yukihiro; Yamada, Harumi Variation of the Alexander-Conway polynomial under Dehn surgery. (English) Zbl 1055.57018 Topology 43, No. 4, 893-901 (2004). Reviewer: Alberto Cavicchioli (Modena) MSC: 57M27 57R65 PDF BibTeX XML Cite \textit{Y. Tsutsumi} and \textit{H. Yamada}, Topology 43, No. 4, 893--901 (2004; Zbl 1055.57018) Full Text: DOI
Cimasoni, David A geometric construction of the Conway potential function. (English) Zbl 1044.57002 Comment. Math. Helv. 79, No. 1, 124-146 (2004). Reviewer: Claus Ernst (Bowling Green) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{D. Cimasoni}, Comment. Math. Helv. 79, No. 1, 124--146 (2004; Zbl 1044.57002) Full Text: DOI arXiv
Shirai, Minori; Taniyama, Kouki A large complete graph in a space contains a link with large link invariant. (English) Zbl 1051.57004 J. Knot Theory Ramifications 12, No. 7, 915-919 (2003). Reviewer: J. L. Ramirez Alfonsin (Paris) MSC: 57M15 57M25 57M27 05C10 PDF BibTeX XML Cite \textit{M. Shirai} and \textit{K. Taniyama}, J. Knot Theory Ramifications 12, No. 7, 915--919 (2003; Zbl 1051.57004) Full Text: DOI
Sawollek, Jörg An orientation-sensitive Vassiliev invariant for virtual knots. (English) Zbl 1051.57013 J. Knot Theory Ramifications 12, No. 6, 767-779 (2003). Reviewer: Sam Nelson (Rancho Cucamonga) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{J. Sawollek}, J. Knot Theory Ramifications 12, No. 6, 767--779 (2003; Zbl 1051.57013) Full Text: DOI arXiv
Mellor, Blake A few weight systems arising from intersection graphs. (English) Zbl 1058.57008 Mich. Math. J. 51, No. 3, 509-536 (2003). Reviewer: Hitoshi Murakami (Tokyo) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{B. Mellor}, Mich. Math. J. 51, No. 3, 509--536 (2003; Zbl 1058.57008) Full Text: DOI arXiv
Masbaum, Gregor; Vaintrob, Arkady Milnor numbers, spanning trees, and the Alexander-Conway polynomial. (English) Zbl 1041.57005 Adv. Math. 180, No. 2, 765-797 (2003). Reviewer: Hitoshi Murakami (Tokyo) MSC: 57M27 PDF BibTeX XML Cite \textit{G. Masbaum} and \textit{A. Vaintrob}, Adv. Math. 180, No. 2, 765--797 (2003; Zbl 1041.57005) Full Text: DOI arXiv
Nakanishi, Yasutaka; Ohyama, Yoshiyuki Delta link homotopy for two component links. III. (English) Zbl 1030.57016 J. Math. Soc. Japan 55, No. 3, 641-654 (2003). MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Nakanishi} and \textit{Y. Ohyama}, J. Math. Soc. Japan 55, No. 3, 641--654 (2003; Zbl 1030.57016) Full Text: DOI
Borwein, Peter; Mossinghoff, Michael J. Newman polynomials with prescribed vanishing and integer sets with distinct subset sums. (English) Zbl 1023.11008 Math. Comput. 72, No. 242, 787-800 (2003). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11C08 11B75 11P99 05D99 11Y55 PDF BibTeX XML Cite \textit{P. Borwein} and \textit{M. J. Mossinghoff}, Math. Comput. 72, No. 242, 787--800 (2003; Zbl 1023.11008) Full Text: DOI
Cimasoni, David Alexander invariants of multilinks. (English) Zbl 1019.57500 Genève: Univ. de Genève, Faculté des Sciences, xvi, 118 p. (2002). MSC: 57M25 57M05 57Q45 PDF BibTeX XML Cite \textit{D. Cimasoni}, Alexander invariants of multilinks. Genève: Univ. de Genève, Faculté des Sciences (2002; Zbl 1019.57500)