×

Dirac cohomology for graded affine Hecke algebras. (English) Zbl 1276.20004

Summary: We define an analogue of the Casimir element for a graded affine Hecke algebra \(\mathbb H\), and then introduce an approximate square-root called the Dirac element. Using it, we define the Dirac cohomology \(H^D(X)\) of an \(\mathbb H\)-module \(X\), and show that \(H^D(X)\) carries a representation of a canonical double cover of the Weyl group \(\widetilde W\). Our main result shows that the \(\widetilde W\)-structure on the Dirac cohomology of an irreducible \(\mathbb H\)-module \(X\) determines the central character of \(X\) in a precise way. This can be interpreted as \(p\)-adic analogue of a conjecture of Vogan for Harish-Chandra modules. We also apply our results to the study of unitary representations of \(\mathbb H\).

MSC:

20C08 Hecke algebras and their representations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B22 Root systems
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
58J05 Elliptic equations on manifolds, general theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arthur, J., On elliptic tempered characters. Acta Math., 171 (1993), 73–138. · Zbl 0822.22011 · doi:10.1007/BF02392767
[2] Atiyah, M. & Schmid, W., A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42 (1977), 1–62. · Zbl 0373.22001 · doi:10.1007/BF01389783
[3] Barbasch, D. & Moy, A., A unitarity criterion for p-adic groups. Invent. Math., 98 (1989), 19–37. · Zbl 0676.22012 · doi:10.1007/BF01388842
[4] – Reduction to real infinitesimal character in affine Hecke algebras. J. Amer. Math. Soc., 6 (1993), 611–635. · Zbl 0835.22016
[5] Casselman, W., A new nonunitarity argument for p-adic representations. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 907–928. · Zbl 0519.22011
[6] Ciubotaru, D., Spin representations of Weyl groups and the Springer correspondence. To appear in J. Reine Angew. Math. · Zbl 1272.17012
[7] Ciubotaru, D. & Trapa, P. E., Functors for unitary representations of classical real groups and affine Hecke algebras. Adv. Math., 227 (2011), 1585–1611. · Zbl 1241.22018 · doi:10.1016/j.aim.2011.03.018
[8] Etingof, P., Freund, R. & Ma, X., A Lie-theoretic construction of some representations of the degenerate affine and double affine Hecke algebras of type BC n . Represent. Theory, 13 (2009), 33–49. · Zbl 1171.20004 · doi:10.1090/S1088-4165-09-00345-8
[9] Howe, R. E. & Moore, C. C., Asymptotic properties of unitary representations. J. Funct. Anal., 32 (1979), 72–96. · Zbl 0404.22015 · doi:10.1016/0022-1236(79)90078-8
[10] Huang, J. S. & Pandžić, P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc., 15 (2002), 185–202. · Zbl 0980.22013 · doi:10.1090/S0894-0347-01-00383-6
[11] Kazhdan, D. & Lusztig, G., Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math., 87 (1987), 153–215. · Zbl 0613.22004 · doi:10.1007/BF01389157
[12] Kostant, B., Dirac cohomology for the cubic Dirac operator, in Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., 210, pp. 69–93. Birkhäuser, Boston, MA, 2003.
[13] Lusztig, G., Cuspidal local systems and graded Hecke algebras. I. Inst. Hautes Études Sci. Publ. Math., 67 (1988), 145–202. · Zbl 0699.22026 · doi:10.1007/BF02699129
[14] – Affine Hecke algebras and their graded version. J. Amer. Math. Soc., 2 (1989), 599–635. · Zbl 0715.22020
[15] – Cuspidal local systems and graded Hecke algebras. III. Represent. Theory, 6 (2002), 202–242. · Zbl 1031.22007
[16] Morris, A. O., Projective representations of reflection groups. II. Proc. London Math. Soc., 40 (1980), 553–576. · Zbl 0424.20009 · doi:10.1112/plms/s3-40.3.553
[17] Opdam, E. & Solleveld, M., Homological algebra for affine Hecke algebras. Adv. Math., 220 (2009), 1549–1601. · Zbl 1195.20004 · doi:10.1016/j.aim.2008.11.002
[18] Parthasarathy, R., Dirac operator and the discrete series. Ann. of Math., 96 (1972), 1–30. · Zbl 0249.22003 · doi:10.2307/1970892
[19] Salamanca-Riba, S. A. & Vogan, D. A., Jr., On the classification of unitary representations of reductive Lie groups. Ann. of Math., 148 (1998), 1067–1133. · Zbl 0918.22009 · doi:10.2307/121036
[20] Springer, T. A., Reductive groups, in Automorphic Forms, Representations and L-functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 3–27. Amer. Math. Soc., Providence, RI, 1979.
[21] Vogan, D. A., Jr., Dirac operators and unitary representations I–III. Lectures at Massachusetts Institute of Technology, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.