×

Distributions of extremal black holes in Calabi-Yau compactifications. (English) Zbl 1456.83042

Summary: We study non-supersymmetric extremal black hole excitations of 4d \(\mathcal{N} = 2\) supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by F. Denef and M. R. Douglas [“Distributions of flux vacua”, J. High Energy Phys. 2004, No. 5, Paper No. 072, 46 p. (2004; doi:10.1088/1126-6708/2004/05/072)] to answer these questions.

MSC:

83C57 Black holes
81T60 Supersymmetric field theories in quantum mechanics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP05 (2004) 072 [hep-th/0404116] [INSPIRE].
[2] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D52 (1995) 5412 [hep-th/9508072] [INSPIRE].
[3] A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B383 (1996) 39 [hep-th/9602111] [INSPIRE].
[4] S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D54 (1996) 1514 [hep-th/9602136] [INSPIRE]. · Zbl 1171.83329
[5] K. Goldstein, V. Jejjala and S. Nampuri, Hot Attractors, JHEP01 (2015) 075 [arXiv:1410.3478] [INSPIRE]. · Zbl 1388.83448
[6] F. Larsen, A nAttractor mechanism for nAdS_2/nCFT_1holography, JHEP04 (2019) 055 [arXiv:1806.06330] [INSPIRE].
[7] K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D72 (2005) 124021 [hep-th/0507096] [INSPIRE].
[8] R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS black hole attractor equation, JHEP03 (2006) 060 [hep-th/0602005] [INSPIRE]. · Zbl 1226.83032
[9] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP09 (2005) 038 [hep-th/0506177] [INSPIRE].
[10] D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav.40 (2008) 2069 [hep-th/0611140] [INSPIRE]. · Zbl 1152.83370
[11] P.K. Tripathy and S.P. Trivedi, Non-supersymmetric attractors in string theory, JHEP03 (2006) 022 [hep-th/0511117] [INSPIRE]. · Zbl 1226.81234
[12] A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP01 (2007) 096 [hep-th/0611143] [INSPIRE].
[13] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026
[14] G.W. Moore, Arithmetic and attractors, hep-th/9807087 [INSPIRE].
[15] F. Denef, Supergravity flows and D-brane stability, JHEP08 (2000) 050 [hep-th/0005049] [INSPIRE]. · Zbl 0990.83553
[16] F. Denef, (Dis)assembling special Lagrangians, hep-th/0107152 [INSPIRE].
[17] P.S. Aspinwall, A. Maloney and A. Simons, Black hole entropy, marginal stability and mirror symmetry, JHEP07 (2007) 034 [hep-th/0610033] [INSPIRE].
[18] S. Kachru and A. Tripathy, BPS jumping loci and special cycles, arXiv:1703.00455 [INSPIRE]. · Zbl 1440.83014
[19] S. Kachru and A. Tripathy, BPS jumping loci are automorphic, Commun. Math. Phys.360 (2018) 919 [arXiv:1706.02706] [INSPIRE]. · Zbl 1440.83014
[20] M.R. Douglas, Random algebraic geometry, attractors and flux vacua, math-ph/0508019 [INSPIRE].
[21] S. Kachru, A. Tripathy and M. Zimet, Recounting Special Lagrangian Cycles in Twistor Families of K 3 Surfaces. Or: How I Learned to Stop Worrying and Count BPS States, arXiv:1807.09984 [INSPIRE].
[22] F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP03 (2005) 061 [hep-th/0411183] [INSPIRE].
[23] F. Denef, B.R. Greene and M. Raugas, Split attractor flows and the spectrum of BPS D-branes on the quintic, JHEP05 (2001) 012 [hep-th/0101135] [INSPIRE].
[24] S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B500 (1997) 75 [hep-th/9702103] [INSPIRE]. · Zbl 0935.83022
[25] M. Bershadsky, C. Vafa and V. Sadov, D strings on D manifolds, Nucl. Phys. B463 (1996) 398 [hep-th/9510225] [INSPIRE]. · Zbl 1004.81535
[26] S.H. Katz, D.R. Morrison and M. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B477 (1996) 105 [hep-th/9601108] [INSPIRE]. · Zbl 0925.81188
[27] K. Saraikin and C. Vafa, Non-supersymmetric black holes and topological strings, Class. Quant. Grav.25 (2008) 095007 [hep-th/0703214] [INSPIRE]. · Zbl 1140.83382
[28] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991) 21 AMS/IP Stud. Adv. Math.9 (1998) 31 [INSPIRE].
[29] A. Klemm and S. Theisen, Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps, Nucl. Phys. B389 (1993) 153 [hep-th/9205041] [INSPIRE].
[30] B.R. Greene and C.I. Lazaroiu, Collapsing D-branes in Calabi-Yau moduli space. 1., Nucl. Phys. B604 (2001) 181 [hep-th/0001025] [INSPIRE]. · Zbl 0983.81075
[31] C.F. Doran and J.W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one parameter families of Calabi-Yau threefolds, math/0505272 [INSPIRE]. · Zbl 1116.14005
[32] P. Ahlqvist, B.R. Greene, D. Kagan, E.A. Lim, S. Sarangi and I.-S. Yang, Conifolds and Tunneling in the String Landscape, JHEP03 (2011) 119 [arXiv:1011.6588] [INSPIRE]. · Zbl 1301.81173
[33] A. Giryavets, S. Kachru and P.K. Tripathy, On the taxonomy of flux vacua, JHEP08 (2004) 002 [hep-th/0404243] [INSPIRE].
[34] N. Benjamin, S. Kachru, K. Ono and L. Rolen, Black holes and class groups, arXiv:1807.00797 [INSPIRE]. · Zbl 1455.11065
[35] F. Denef, On the correspondence between D-branes and stationary supergravity solutions of type-II Calabi-Yau compactifications, hep-th/0010222 [INSPIRE]. · Zbl 1067.83016
[36] M. Demirtas, C. Long, L. McAllister and M. Stillman, The Kreuzer-Skarke Axiverse, JHEP04 (2020) 138 [arXiv:1808.01282] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.