×

Hilbert squares of \(K3\) surfaces and Debarre-Voisin varieties. (Schémas de Hilbert ponctuels de surfaces \(K3\) et variétés de Debarre-Voisin.) (English. French summary) Zbl 1442.14125

Let \(V\) be a \(10\)-dimensional complex vector space. From a trivector \(\sigma\in\bigwedge^{3}V^{\vee}\), we associate a canonically polarized subvariety \(K_{\sigma}\) of \(\mathrm{Gr}(6,V)\), called the Debarre-Voisin variety. For general \(\sigma\), \(K_{\sigma}\) form a local complete family of hyperkähler of \(K3^{[2]}\)-type. The GIT quotient \(\mathscr{M}_{DV}:=\mathbb{P}(\bigwedge^{3}V^{\vee})//\mathrm{SL}(\bigwedge^{3}V^{\vee})\) is the coarse moduli space of trivectors. By composition with the period map, we can construct a rational map \(q:\mathscr{M}_{DV}\dashrightarrow\mathcal{F}\), where \(\mathcal{F}\) is the period domain of polarized varieties of type \((K_{\sigma},\mathcal{O}_{K_{\sigma}}(1))\).
There exists a resolution of \(q\), \(\overline{q}:\widetilde{\mathscr{M}_{DV}}\twoheadrightarrow\overline{\mathcal{F}}\), where \(\overline{\mathcal{F}}\) is the Baily-Borel projective compactification of \(\mathcal{F}\) and \(\widetilde{\mathscr{M}_{DV}}\) is obtained from the blow up of \(\mathbb{P}(\bigwedge^{3}V^{\vee})\) along trivectors with positive-dimensional stabilizers.
An HLS divisor is an irreducible hypersurface of \(\overline{\mathcal{F}}\) which is the image of an exceptional divisor of \(\widetilde{\mathscr{M}_{DV}}\rightarrow\mathscr{M}_{DV}\).
The main result of the article under review is that the Heegner divisors \(\mathscr{D}_{2},\mathscr{D}_{6},\mathscr{D}_{10},\mathscr{D}_{18}\) are HLS divisors. These divisors are studied one by one.
In the case \(\mathscr{D}_{6}\), the strategy is the following. Define a trivector \(\sigma\) whose Debarre-Voisin variety \(K_{\sigma}\) is smooth but has dimension \(6\) (this was proved by P. Hivert in [Ann. Inst. Fourier 61, No. 5, 2121–2138 (2011; Zbl 1298.14050)]). A general \(1\)-parameter deformation of \(\sigma\) defines a family of Debarre-Voisin varieties with central fiber \(S^{[2]}\), where \(S\) is a surface \(K3\) of degree \(6\). The subvariety \(S^{[2]}\subset K_{\sigma}\) is the zero locus of a rank \(2\) excess bundle described explicitly.
In the case \(\mathscr{D}_{18}\) the authors apply a very similar strategy.
In the case \(\mathscr{D}_{10}\), the authors start from a degree \(10\) general polarized \(K3\) surface \((S,L)\). Such a variety is the anticanonical section of a Fano threefold \(X\subset\mathrm{Gr}(2,\mathbb{C}^{5})\) of index \(2\). Moreover, they construct a vector bundle on \(X^{[2]}\) such that the global sections define a birational map from \(X^{[2]}\) to a certain smooth subspace \(K_{1}\subset\mathrm{Gr}(6,V)\). The restriction of such a map to \(S^{[2]}\) is regular outside a smooth surface. After that, they define a trivector \(\sigma\) whose Debarre-Voisin variety \(K_{\sigma}\) has \(K_{1}\) as component. A general \(1\)-parameter family of \(\sigma\) gives, after a pull back by a finite cover, a family of Debarre-Voisin varieties where the central fiber is the polarized variety \((S^{[2]},2L-3\delta)\).
In the final case, they construct a trivector \(\sigma\) whose Debarre-Voisin variety is neither reduced nor irreducible. A general \(1\)-parameter family of \(\sigma\) gives, after a pull back by a finite cover, a family of Debarre-Voisin varieties where the central fiber is the polarized variety \((\mathcal{M}_{S}(0,L,1),6L-5\delta)\). That is, the moduli space of \(L\)-semistable pure sheaves of Mukai vector \((0,L,1)\) on a \(K3\) surface \((S,L)\) of degree \(2\).
In the last section, some partial result of the case \(\mathscr{D}_{30}\) are described.

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J35 \(4\)-folds
14M15 Grassmannians, Schubert varieties, flag manifolds
14J70 Hypersurfaces and algebraic geometry
14J28 \(K3\) surfaces and Enriques surfaces

Citations:

Zbl 1298.14050

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Apostolov, Apostol, Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected, Ann. Inst. Fourier (Grenoble), 64, 1, 189-202 (2014) · Zbl 1329.14075 · doi:10.5802/aif.2844
[2] Beauville, Arnaud; Donagi, Ron, La variété des droites d’une hypersurface cubique de dimension \(4\), C. R. Acad. Sci. Paris Sér. I Math., 301, 14, 703-706 (1985) · Zbl 0602.14041
[3] Bayer, Arend; Macrì, Emanuele, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., 198, 3, 505-590 (2014) · Zbl 1308.14011 · doi:10.1007/s00222-014-0501-8
[4] Bourbaki, Nicolas, Groupes et algèbres de Lie, chapitres 7 et 8. Éléments de mathématiques (1990), Masson: Masson, Paris · Zbl 1181.17001
[5] Cheltsov, Ivan; Shramov, Constantin, Cremona groups and the icosahedron (2016), CRC Press: CRC Press, Boca Raton, FL · Zbl 1328.14003
[6] Danila, Gentiana, Sur la cohomologie d’un fibré tautologique sur le schéma de Hilbert d’une surface, J. Algebraic Geom., 10, 2, 247-280 (2001) · Zbl 0988.14011
[7] Danila, Gentiana, Sections de la puissance tensorielle du fibré tautologique sur le schéma de Hilbert des points d’une surface, Bull. London Math. Soc., 39, 2, 311-316 (2007) · Zbl 1122.14002 · doi:10.1112/blms/bdl035
[8] Debarre, O., Hyperkähler manifolds (2018)
[9] Debarre, O.; Iliev, A.; Manivel, L., Recent advances in algebraic geometry, 417, Special prime Fano fourfolds of degree 10 and index 2, 123-155 (2015), Cambridge Univ. Press: Cambridge Univ. Press, Cambridge · Zbl 1326.14094 · doi:10.1017/CBO9781107416000.009
[10] Debarre, Olivier; Macrì, Emanuele, On the period map for polarized hyperkähler fourfolds, Internat. Math. Res. Notices, 22, 6887-6923 (2019) · Zbl 1436.14022 · doi:10.1093/imrn/rnx333
[11] Dolgachev, Igor V., Classical algebraic geometry. A modern view (2012), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1252.14001 · doi:10.1017/CBO9781139084437
[12] Debarre, Olivier; Voisin, Claire, Hyper-Kähler fourfolds and Grassmann geometry, J. reine angew. Math., 649, 63-87 (2010) · Zbl 1217.14028 · doi:10.1515/CRELLE.2010.089
[13] Gritsenko, V. A.; Hulek, K.; Sankaran, G. K., The Kodaira dimension of the moduli of K3 surfaces, Invent. Math., 169, 3, 519-567 (2007) · Zbl 1128.14027 · doi:10.1007/s00222-007-0054-1
[14] Gritsenko, V.; Hulek, K.; Sankaran, G. K., Moduli spaces of irreducible symplectic manifolds, Compositio Math., 146, 2, 404-434 (2010) · Zbl 1230.14051 · doi:10.1112/S0010437X0900445X
[15] Gritsenko, V.; Hulek, K.; Sankaran, G. K., Handbook of moduli. Vol. I, 24, Moduli of K3 surfaces and irreducible symplectic manifolds, 459-526 (2013), Int. Press: Int. Press, Somerville, MA · Zbl 1322.14004
[16] Grayson, D.; Stillman, M., Macaulay2, a software system for research in algebraic geometry
[17] Han, F., Computations with Macaulay2
[18] Hassett, Brendan, Special cubic fourfolds, Compositio Math., 120, 1, 1-23 (2000) · Zbl 0956.14031 · doi:10.1023/A:1001706324425
[19] Hivert, Pascal, Equations of some wonderful compactifications, Ann. Inst. Fourier (Grenoble), 61, 5, 2121-2138 (2012) (2011) · Zbl 1298.14050 · doi:10.5802/aif.2668
[20] Horikawa, Eiji, Surjectivity of the period map of K3 surfaces of degree \(2\), Math. Ann., 228, 2, 113-146 (1977) · Zbl 0333.32020 · doi:10.1007/BF01351167
[21] Hassett, Brendan; Tschinkel, Yuri, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., 19, 4, 1065-1080 (2009) · Zbl 1183.14058 · doi:10.1007/s00039-009-0022-6
[22] Huybrechts, Daniel, Séminaire Bourbaki, 348, A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], 375-403 (2012), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1272.32014
[23] Iskovskih, V. A., Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41, 3, 516-562 (1977) · Zbl 0363.14010
[24] Kollár, János; Laza, Radu; Saccà, Giulia; Voisin, Claire, Remarks on degenerations of hyper-Kähler manifolds, Ann. Inst. Fourier (Grenoble), 68, 7, 2837-2882 (2018) · Zbl 1435.14038 · doi:10.5802/aif.3228
[25] Krug, Andreas, Tensor products of tautological bundles under the Bridgeland-King-Reid-Haiman equivalence, Geom. Dedicata, 172, 245-291 (2014) · Zbl 1337.14005 · doi:10.1007/s10711-013-9919-1
[26] Laza, Radu, The moduli space of cubic fourfolds, J. Algebraic Geom., 18, 511-545 (2009) · Zbl 1169.14026 · doi:10.1090/S1056-3911-08-00506-7
[27] Laza, Radu, The moduli space of cubic fourfolds via the period map, Ann. of Math. (2), 172, 1, 673-711 (2010) · Zbl 1201.14026 · doi:10.4007/annals.2010.172.673
[28] Looijenga, Eduard, Compactifications defined by arrangements. II. Locally symmetric varieties of type IV, Duke Math. J., 119, 3, 527-588 (2003) · Zbl 1079.14045 · doi:10.1215/S0012-7094-03-11933-X
[29] Looijenga, Eduard, The period map for cubic fourfolds, Invent. Math., 177, 1, 213-233 (2009) · Zbl 1177.32010 · doi:10.1007/s00222-009-0178-6
[30] Luna, D., Adhérences d’orbite et invariants, Invent. Math., 29, 3, 231-238 (1975) · Zbl 0315.14018 · doi:10.1007/BF01389851
[31] Markman, Eyal, Complex and differential geometry, 8, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, 257-322 (2011), Springer: Springer, Heidelberg · Zbl 1229.14009 · doi:10.1007/978-3-642-20300-8_15
[32] Mukai, Shigeru, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 77, 1, 101-116 (1984) · Zbl 0565.14002 · doi:10.1007/BF01389137
[33] Mukai, Shigeru, Algebraic geometry and commutative algebra, Vol. I, Curves, K3 surfaces and Fano \(3\)-folds of genus \(\le 10, 357-377 (1988)\), Kinokuniya: Kinokuniya, Tokyo · Zbl 0701.14044
[34] Mukai, Shigeru, Moduli spaces and arithmetic geometry, 45, Polarized K3 surfaces of genus thirteen, 315-326 (2006), Math. Soc. Japan: Math. Soc. Japan, Tokyo · Zbl 1117.14040 · doi:10.2969/aspm/04510315
[35] Mukai, Shigeru, Minimal models and extremal rays (Kyoto, 2011), 70, K3 surfaces of genus sixteen, 379-396 (2016), Math. Soc. Japan: Math. Soc. Japan, Tokyo · Zbl 1369.14049 · doi:10.2969/aspm/07010379
[36] Nagell, Trygve, Introduction to number theory (1964), Chelsea Publishing Co.: Chelsea Publishing Co., New York
[37] O’Grady, Kieran G., Periods of double EPW-sextics, Math. Z., 280, 1-2, 485-524 (2015) · Zbl 1327.14061 · doi:10.1007/s00209-015-1434-7
[38] O’Grady, Kieran G., Moduli of double EPW-sextics, 240, no. 1136 (2016), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1408.14116 · doi:10.1090/memo/1136
[39] O’Grady, Kieran G., Modular sheaves on hyperkähler varieties (2019) · Zbl 1485.14070
[40] Shah, Jayant, A complete moduli space for K3 surfaces of degree \(2\), Ann. of Math. (2), 112, 3, 485-510 (1980) · Zbl 0412.14016 · doi:10.2307/1971089
[41] Springer, T. A., Linear algebraic groups (2009), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc., Boston, MA · Zbl 1202.20048
[42] van den Dries, B., Degenerations of cubic fourfolds and holomorphic symplectic geometry (2012)
[43] Verbitsky, Misha, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., 162, 15, 2929-2986 (2013) · Zbl 1295.53042 · doi:10.1215/00127094-2382680
[44] Viehweg, Eckart, Weak positivity and the stability of certain Hilbert points. III, Invent. Math., 101, 3, 521-543 (1990) · Zbl 0746.14014 · doi:10.1007/BF01231514
[45] Wandel, Malte, Stability of tautological bundles on the Hilbert scheme of two points on a surface, Nagoya Math. J., 214, 79-94 (2014) · Zbl 1319.14049 · doi:10.1215/00277630-2416410
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.