Gopinath, Venkatesh; Fournier, Alexandre; Gastine, Thomas An assessment of implicit-explicit time integrators for the pseudo-spectral approximation of Boussinesq thermal convection in an annulus. (English) Zbl 07525147 J. Comput. Phys. 460, Article ID 110965, 32 p. (2022). MSC: 65Lxx 65Mxx 76Mxx PDF BibTeX XML Cite \textit{V. Gopinath} et al., J. Comput. Phys. 460, Article ID 110965, 32 p. (2022; Zbl 07525147) Full Text: DOI OpenURL
Li, Chaofan; Liu, Hui; Xin, Jie Pullback \(\mathcal{D}\)-attractors of the 3D Boussinesq equations with damping. (English) Zbl 07517474 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1343-1366 (2022). MSC: 35B41 35Q35 76B03 PDF BibTeX XML Cite \textit{C. Li} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1343--1366 (2022; Zbl 07517474) Full Text: DOI OpenURL
Hu, Hengchun; Li, Xiaodan Nonlocal symmetry and interaction solutions for the new \((3+1)\)-dimensional integrable Boussinesq equation. (English) Zbl 07512751 Math. Model. Nat. Phenom. 17, Paper No. 2, 10 p. (2022). MSC: 35Q51 37K40 PDF BibTeX XML Cite \textit{H. Hu} and \textit{X. Li}, Math. Model. Nat. Phenom. 17, Paper No. 2, 10 p. (2022; Zbl 07512751) Full Text: DOI OpenURL
Ozawa, Tohru; Tomioka, Kenta Schrödinger-improved Boussinesq system in two space dimensions. (English) Zbl 07511797 J. Evol. Equ. 22, No. 2, Paper No. 35, 16 p. (2022). MSC: 35Q55 35A35 35B30 35L70 PDF BibTeX XML Cite \textit{T. Ozawa} and \textit{K. Tomioka}, J. Evol. Equ. 22, No. 2, Paper No. 35, 16 p. (2022; Zbl 07511797) Full Text: DOI OpenURL
Forbes, Lawrence K.; Turner, Ross J.; Walters, Stephen J. An extended Boussinesq theory for interfacial fluid mechanics. (English) Zbl 07507207 J. Eng. Math. 133, Paper No. 10, 20 p. (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{L. K. Forbes} et al., J. Eng. Math. 133, Paper No. 10, 20 p. (2022; Zbl 07507207) Full Text: DOI OpenURL
Peralta, Gilbert Optimal Borel measure controls for the two-dimensional stationary Boussinesq system. (English) Zbl 07500011 ESAIM, Control Optim. Calc. Var. 28, Paper No. 22, 33 p. (2022). MSC: 49J20 49K20 49M15 PDF BibTeX XML Cite \textit{G. Peralta}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 22, 33 p. (2022; Zbl 07500011) Full Text: DOI OpenURL
Cen, Julia; Correa, Francisco; Fring, Andreas; Taira, Takanobu Stability in integrable nonlocal nonlinear equations. (English) Zbl 07499421 Phys. Lett., A 435, Article ID 128060, 7 p. (2022). MSC: 81Q05 35Q55 81P94 81Q80 81R12 35C08 PDF BibTeX XML Cite \textit{J. Cen} et al., Phys. Lett., A 435, Article ID 128060, 7 p. (2022; Zbl 07499421) Full Text: DOI OpenURL
Peralta, Gilbert Weak and very weak solutions to the viscous Cahn-Hilliard-Oberbeck-Boussinesq phase-field system on two-dimensional bounded domains. (English) Zbl 07490274 J. Evol. Equ. 22, No. 1, Paper No. 12, 71 p. (2022). MSC: 35Q35 35K58 76D03 76T06 PDF BibTeX XML Cite \textit{G. Peralta}, J. Evol. Equ. 22, No. 1, Paper No. 12, 71 p. (2022; Zbl 07490274) Full Text: DOI OpenURL
Du, Lihuai; Zhang, Ting The global existence and averaging theorem for the strong solution of the stochastic Boussinesq equations with the low Froude number. (English) Zbl 07488941 J. Math. Fluid Mech. 24, No. 2, Paper No. 32, 20 p. (2022). MSC: 35Q35 76D03 60H15 PDF BibTeX XML Cite \textit{L. Du} and \textit{T. Zhang}, J. Math. Fluid Mech. 24, No. 2, Paper No. 32, 20 p. (2022; Zbl 07488941) Full Text: DOI OpenURL
Dong, Lihua On asymptotic stability of the 3D Boussinesq equations with a velocity damping term. (English) Zbl 07488932 J. Math. Fluid Mech. 24, No. 1, Paper No. 23, 25 p. (2022). MSC: 35Q35 35B35 PDF BibTeX XML Cite \textit{L. Dong}, J. Math. Fluid Mech. 24, No. 1, Paper No. 23, 25 p. (2022; Zbl 07488932) Full Text: DOI arXiv OpenURL
Khorbatly, Bashar; Lteif, Ralph; Israwi, Samer; Gerbi, Stéphane Mathematical modeling and numerical analysis for the higher order Boussinesq system. (English) Zbl 07488344 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593-615 (2022). MSC: 35Q35 35L45 35L60 76B45 76B55 35C07 65L99 PDF BibTeX XML Cite \textit{B. Khorbatly} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593--615 (2022; Zbl 07488344) Full Text: DOI arXiv OpenURL
He, Jinfang; Ma, Shan; Sun, Chunyou Well-posedness and attractors for a 2D Boussinesq system with partial dissipation. (English) Zbl 07486731 J. Differ. Equations 319, 1-40 (2022). MSC: 35Qxx 35B41 76D03 35Q35 PDF BibTeX XML Cite \textit{J. He} et al., J. Differ. Equations 319, 1--40 (2022; Zbl 07486731) Full Text: DOI OpenURL
Sun, Ying-ying; Sun, Wan-yi An update of a Bäcklund transformation and its applications to the Boussinesq system. (English) Zbl 07484264 Appl. Math. Comput. 421, Article ID 126964, 14 p. (2022). MSC: 37Kxx 35Qxx 39Axx PDF BibTeX XML Cite \textit{Y.-y. Sun} and \textit{W.-y. Sun}, Appl. Math. Comput. 421, Article ID 126964, 14 p. (2022; Zbl 07484264) Full Text: DOI OpenURL
Wang, Weinan On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space. (English) Zbl 07474607 Commun. Math. Sci. 20, No. 2, 479-493 (2022). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35B65 35C10 35Q35 76B03 PDF BibTeX XML Cite \textit{W. Wang}, Commun. Math. Sci. 20, No. 2, 479--493 (2022; Zbl 07474607) Full Text: DOI OpenURL
Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory. (English) Zbl 07472947 J. Inverse Ill-Posed Probl. 30, No. 1, 35-79 (2022). MSC: 35Qxx 35K05 35Q30 35R30 93C20 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., J. Inverse Ill-Posed Probl. 30, No. 1, 35--79 (2022; Zbl 07472947) Full Text: DOI arXiv OpenURL
Dehghan, Mehdi; Gharibi, Zeinab An analysis of weak Galerkin finite element method for a steady state Boussinesq problem. (English) Zbl 1482.35168 J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022). MSC: 35Q35 35B45 35B35 35A01 35A02 76D05 76M10 80A19 65N30 65N15 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{Z. Gharibi}, J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022; Zbl 1482.35168) Full Text: DOI OpenURL
Ma, Liangliang Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. (English) Zbl 1481.35341 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 863-882 (2022). MSC: 35Q35 35Q86 76D03 76D50 76R10 86A05 35B35 35B40 35B20 26A33 35R11 PDF BibTeX XML Cite \textit{L. Ma}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 863--882 (2022; Zbl 1481.35341) Full Text: DOI OpenURL
Gebhard, Björn; Kolumbán, József J. Relaxation of the Boussinesq system and applications to the Rayleigh-Taylor instability. (English) Zbl 07455871 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 7, 38 p. (2022). MSC: 35Qxx 35D30 35Q35 76B03 76F25 PDF BibTeX XML Cite \textit{B. Gebhard} and \textit{J. J. Kolumbán}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 7, 38 p. (2022; Zbl 07455871) Full Text: DOI arXiv OpenURL
Mu, Pengcheng; Schochet, Steve Dispersive estimates for the inviscid rotating stratified Boussinesq equations in the stratification-dominant three-scale limit. (English. French summary) Zbl 1481.35342 J. Math. Pures Appl. (9) 158, 90-119 (2022). MSC: 35Q35 76D50 76U05 76U65 76M45 35B40 35A01 PDF BibTeX XML Cite \textit{P. Mu} and \textit{S. Schochet}, J. Math. Pures Appl. (9) 158, 90--119 (2022; Zbl 1481.35342) Full Text: DOI OpenURL
Huang, Jianhua; Zheng, Yan; Shen, Tianlong; Guo, Chunxiao Asymptotic properties of the 2D stochastic fractional Boussinesq equations driven by degenerate noise. (English) Zbl 1479.60130 J. Differ. Equations 310, 362-403 (2022). MSC: 60H15 37A25 35Q35 35R11 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Differ. Equations 310, 362--403 (2022; Zbl 1479.60130) Full Text: DOI OpenURL
He, Zihui; Liao, Xian On the two-dimensional Boussinesq equations with temperature-dependent thermal and viscosity diffusions in general Sobolev spaces. (English) Zbl 1479.35614 Z. Angew. Math. Phys. 73, No. 1, Paper No. 16, 25 p. (2022). MSC: 35Q30 76D03 76D05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{Z. He} and \textit{X. Liao}, Z. Angew. Math. Phys. 73, No. 1, Paper No. 16, 25 p. (2022; Zbl 1479.35614) Full Text: DOI arXiv OpenURL
Ma, Yu-Lan; Li, Bang-Qing Bifurcation solitons and breathers for the nonlocal Boussinesq equations. (English) Zbl 1479.35212 Appl. Math. Lett. 124, Article ID 107677, 10 p. (2022). MSC: 35C08 35B32 35Q35 PDF BibTeX XML Cite \textit{Y.-L. Ma} and \textit{B.-Q. Li}, Appl. Math. Lett. 124, Article ID 107677, 10 p. (2022; Zbl 1479.35212) Full Text: DOI OpenURL
Chen, Dongxiang; Li, Xiaoli Stability of stationary solutions to 2D Boussinesq equations with partial dissipation on a flat strip. (English) Zbl 1479.35653 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112639, 17 p. (2022). MSC: 35Q35 76D03 76D50 35B35 35B20 35A01 PDF BibTeX XML Cite \textit{D. Chen} and \textit{X. Li}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112639, 17 p. (2022; Zbl 1479.35653) Full Text: DOI OpenURL
Shao, Ruijie; Zhang, Ping On the instability of the possible blow-up solutions to 2D Boussinesq system. (English) Zbl 1477.35136 J. Differ. Equations 306, 547-568 (2022). MSC: 35Q30 35B30 35B44 76D03 PDF BibTeX XML Cite \textit{R. Shao} and \textit{P. Zhang}, J. Differ. Equations 306, 547--568 (2022; Zbl 1477.35136) Full Text: DOI OpenURL
Arnesen, Mathias Nikolai Decay and symmetry of solitary waves. (English) Zbl 1477.35154 J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022). MSC: 35Q35 35C08 35B06 76B15 PDF BibTeX XML Cite \textit{M. N. Arnesen}, J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022; Zbl 1477.35154) Full Text: DOI arXiv OpenURL
Li, Zijin Critical conditions on \(w^\theta\) imply the regularity of axially symmetric MHD-Boussinesq systems. (English) Zbl 07412942 J. Math. Anal. Appl. 505, No. 1, Article ID 125451, 18 p. (2022). MSC: 35Qxx 76Dxx 35Bxx PDF BibTeX XML Cite \textit{Z. Li}, J. Math. Anal. Appl. 505, No. 1, Article ID 125451, 18 p. (2022; Zbl 07412942) Full Text: DOI OpenURL
Ismael, Hajar F.; Bulut, Hasan; Baskonus, Haci Mehmet; Gao, Wei Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative. (English) Zbl 07513670 AIMS Math. 6, No. 7, 7909-7928 (2021). MSC: 35Q41 35Q60 26A24 PDF BibTeX XML Cite \textit{H. F. Ismael} et al., AIMS Math. 6, No. 7, 7909--7928 (2021; Zbl 07513670) Full Text: DOI OpenURL
Heydari, M. H.; Razzaghi, M.; Avazzadeh, Z. Orthonormal shifted discrete Chebyshev polynomials: application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system. (English) Zbl 07512467 Chaos Solitons Fractals 143, Article ID 110570, 15 p. (2021). MSC: 65-XX 41-XX PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Chaos Solitons Fractals 143, Article ID 110570, 15 p. (2021; Zbl 07512467) Full Text: DOI OpenURL
Abbaszadeh, Mostafa; Dehghan, Mehdi; Khodadadian, Amirreza; Noii, Nima; Heitzinger, Clemens; Wick, Thomas A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: nonstationary incompressible Boussinesq equations. (English) Zbl 07510038 J. Comput. Phys. 426, Article ID 109875, 27 p. (2021). MSC: 80-XX 65-XX PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., J. Comput. Phys. 426, Article ID 109875, 27 p. (2021; Zbl 07510038) Full Text: DOI OpenURL
Li, Yuanfei; Zhang, Shuanghu; Lin, Changhao Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain. (English) Zbl 07509871 Bound. Value Probl. 2021, Paper No. 27, 19 p. (2021). MSC: 35B30 35B45 35Q35 76D05 PDF BibTeX XML Cite \textit{Y. Li} et al., Bound. Value Probl. 2021, Paper No. 27, 19 p. (2021; Zbl 07509871) Full Text: DOI OpenURL
Peralta, Gilbert Distributed optimal control of the 2D Cahn-Hilliard-Oberbeck-Boussinesq system for nonisothermal viscous two-phase flows. (English) Zbl 07498405 Appl. Math. Optim. 84, Suppl. 2, 1219-1279 (2021). MSC: 35Qxx 35B65 35Q93 49K20 76D55 PDF BibTeX XML Cite \textit{G. Peralta}, Appl. Math. Optim. 84, 1219--1279 (2021; Zbl 07498405) Full Text: DOI OpenURL
Shakhmurov, Veli; Shahmurov, Rishad The regularity properties and blow-up of the solutions for improved Boussinesq equations. (English) Zbl 07493413 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 89, 21 p. (2021). MSC: 35A01 35B44 PDF BibTeX XML Cite \textit{V. Shakhmurov} and \textit{R. Shahmurov}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 89, 21 p. (2021; Zbl 07493413) Full Text: DOI OpenURL
Arafa, Anas A. M. Analytical solutions for nonlinear fractional physical problems via natural homotopy perturbation method. (English) Zbl 07489958 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 179, 16 p. (2021). MSC: 35Qxx 26A33 35Dxx 81Q05 PDF BibTeX XML Cite \textit{A. A. M. Arafa}, Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 179, 16 p. (2021; Zbl 07489958) Full Text: DOI OpenURL
Dougalis, Vassilios A.; Durán, Angel; Saridaki, Leetha On solitary-wave solutions of Boussinesq/Boussinesq systems for internal waves. (English) Zbl 07479402 Physica D 428, Article ID 133051, 23 p. (2021). MSC: 35Qxx 37-XX PDF BibTeX XML Cite \textit{V. A. Dougalis} et al., Physica D 428, Article ID 133051, 23 p. (2021; Zbl 07479402) Full Text: DOI arXiv OpenURL
Kamimura, Yutaka Nonconservative reflectionless inverse scattering and soliton solutions of an associated nonlinear evolution system. (English) Zbl 1482.35214 J. Math. Sci., Tokyo 28, No. 04, 651-712 (2021). MSC: 35Q55 35Q35 35Q53 35C08 37K10 37K40 81U40 35R30 PDF BibTeX XML Cite \textit{Y. Kamimura}, J. Math. Sci., Tokyo 28, No. 04, 651--712 (2021; Zbl 1482.35214) Full Text: Link OpenURL
Slimani, Ali; Bouzettouta, Lamine; Guesmia, Amar Existence and uniqueness of the weak solution for Keller-Segel model coupled with Boussinesq equations. (English) Zbl 07473390 Demonstr. Math. 54, 558-575 (2021). MSC: 92C17 35K58 35K57 PDF BibTeX XML Cite \textit{A. Slimani} et al., Demonstr. Math. 54, 558--575 (2021; Zbl 07473390) Full Text: DOI OpenURL
He, Ji-Huan; Hou, Wei-Fan; He, Chun-Hui; Saeed, Tareq; Hayat, Tasawar Variational approach to fractal solitary waves. (English) Zbl 1482.35249 Fractals 29, No. 7, Article ID 2150199, 5 p. (2021). MSC: 35R11 35C07 35C08 35Q35 PDF BibTeX XML Cite \textit{J.-H. He} et al., Fractals 29, No. 7, Article ID 2150199, 5 p. (2021; Zbl 1482.35249) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong; Zhu, Hong-Wei A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. (English) Zbl 07465643 Fractals 29, No. 5, Article ID 2150122, 13 p. (2021). MSC: 35Qxx 35-XX 76-XX PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 29, No. 5, Article ID 2150122, 13 p. (2021; Zbl 07465643) Full Text: DOI OpenURL
Pollock, Sara; Rebholz, Leo G.; Xiao, Mengying Acceleration of nonlinear solvers for natural convection problems. (English) Zbl 07461998 J. Numer. Math. 29, No. 4, 323-341 (2021). MSC: 65Nxx 65N30 76D05 PDF BibTeX XML Cite \textit{S. Pollock} et al., J. Numer. Math. 29, No. 4, 323--341 (2021; Zbl 07461998) Full Text: DOI arXiv OpenURL
Wang, Hongwei; Esfahani, Amin The limit behavior of solutions for the Cauchy problem of the sixth-order Boussinesq equation. (English) Zbl 1478.35103 Acta Appl. Math. 176, Paper No. 13, 19 p. (2021). MSC: 35G25 35B30 35Q53 PDF BibTeX XML Cite \textit{H. Wang} and \textit{A. Esfahani}, Acta Appl. Math. 176, Paper No. 13, 19 p. (2021; Zbl 1478.35103) Full Text: DOI OpenURL
Pei, Yuan Regularity and convergence results of the velocity-vorticity-Voigt model of the 3D Boussinesq equations. (English) Zbl 1477.35092 Acta Appl. Math. 176, Paper No. 8, 25 p. (2021). MSC: 35K40 35K61 35Q30 35B40 35B65 76D03 76D05 PDF BibTeX XML Cite \textit{Y. Pei}, Acta Appl. Math. 176, Paper No. 8, 25 p. (2021; Zbl 1477.35092) Full Text: DOI OpenURL
Yu, Yanghai; Yang, Xiaolei Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations. (English) Zbl 07452062 J. Math. Phys. 62, No. 12, 121504, 8 p. (2021). MSC: 35Q30 76W05 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{X. Yang}, J. Math. Phys. 62, No. 12, 121504, 8 p. (2021; Zbl 07452062) Full Text: DOI OpenURL
Dai, Xiaoqiang; Chen, Shaohua Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. (English) Zbl 1476.35232 Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4201-4211 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{X. Dai} and \textit{S. Chen}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4201--4211 (2021; Zbl 1476.35232) Full Text: DOI OpenURL
Prüss, Jan; Simonett, Gieri; Wilke, Mathias On the Navier-Stokes equations on surfaces. (English) Zbl 07451400 J. Evol. Equ. 21, No. 3, 3153-3179 (2021). Reviewer: Weinan Wang (Tucson) MSC: 35Q35 35Q30 35B40 76D05 35B65 35A01 35A02 15A69 PDF BibTeX XML Cite \textit{J. Prüss} et al., J. Evol. Equ. 21, No. 3, 3153--3179 (2021; Zbl 07451400) Full Text: DOI arXiv OpenURL
Aurazo-Alvarez, Leithold L.; Ferreira, Lucas C. F. Global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a framework of Fourier-Besov type. (English) Zbl 07450777 SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 62, 18 p. (2021). Reviewer: Emmanuel Grenier (Lyon) MSC: 76U05 76U60 76D03 76D50 35Q30 PDF BibTeX XML Cite \textit{L. L. Aurazo-Alvarez} and \textit{L. C. F. Ferreira}, SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 62, 18 p. (2021; Zbl 07450777) Full Text: DOI arXiv OpenURL
Wang, Yue; Zhang, Jianbing The Matveev and mixed solutions of the Boussinesq-Burgers equation. (Chinese. English summary) Zbl 07448416 J. Jiangsu Norm. Univ., Nat. Sci. 39, No. 2, 40-44 (2021). MSC: 35Q51 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{J. Zhang}, J. Jiangsu Norm. Univ., Nat. Sci. 39, No. 2, 40--44 (2021; Zbl 07448416) Full Text: DOI OpenURL
Chen, Zhihao; Deng, Dawen Autonomous solutions of two dimension incompressible ideal fluid equations in angular symmetric domains. (Chinese. English summary) Zbl 07448409 J. Hubei Univ., Nat. Sci. 43, No. 4, 403-412 (2021). MSC: 35Q31 35Q35 76B03 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{D. Deng}, J. Hubei Univ., Nat. Sci. 43, No. 4, 403--412 (2021; Zbl 07448409) Full Text: DOI OpenURL
Li, Qiqi; Zhou, Shouming; Duan, Jun Study on some problems of solutions for a classical Boussinesq system. (Chinese. English summary) Zbl 07448330 J. Chongqing Norm. Univ., Nat. Sci. 38, No. 3, 68-77 (2021). MSC: 35Q53 35B44 35D30 PDF BibTeX XML Cite \textit{Q. Li} et al., J. Chongqing Norm. Univ., Nat. Sci. 38, No. 3, 68--77 (2021; Zbl 07448330) Full Text: DOI OpenURL
Manafian, Jalil Multiple rogue wave solutions and the linear superposition principle for a \((3 + 1)\)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation arising in energy distributions. (English) Zbl 07441945 Math. Methods Appl. Sci. 44, No. 18, 14079-14093 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{J. Manafian}, Math. Methods Appl. Sci. 44, No. 18, 14079--14093 (2021; Zbl 07441945) Full Text: DOI OpenURL
Richard, Gaël L. An extension of the Boussinesq-type models to weakly compressible flows. (English) Zbl 07437264 Eur. J. Mech., B, Fluids 89, 217-240 (2021). MSC: 76-XX PDF BibTeX XML Cite \textit{G. L. Richard}, Eur. J. Mech., B, Fluids 89, 217--240 (2021; Zbl 07437264) Full Text: DOI OpenURL
Saut, Jean-Claude; Xu, Li Long time existence for a two-dimensional strongly dispersive Boussinesq system. (English) Zbl 07433751 Commun. Partial Differ. Equations 46, No. 11, 2057-2087 (2021). MSC: 35Qxx 35A01 35Q35 35Q53 PDF BibTeX XML Cite \textit{J.-C. Saut} and \textit{L. Xu}, Commun. Partial Differ. Equations 46, No. 11, 2057--2087 (2021; Zbl 07433751) Full Text: DOI arXiv OpenURL
Luo, Dejun Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system. (English) Zbl 1477.60099 Nonlinearity 34, No. 12, 8311-8330 (2021). MSC: 60H15 35Q35 35D30 PDF BibTeX XML Cite \textit{D. Luo}, Nonlinearity 34, No. 12, 8311--8330 (2021; Zbl 1477.60099) Full Text: DOI arXiv OpenURL
Su, Chunmei; Muslu, Gulcin M. An exponential integrator sine pseudospectral method for the generalized improved Boussinesq equation. (English) Zbl 1477.35228 BIT 61, No. 4, 1397-1419 (2021). MSC: 35Q53 65M70 65M06 65N35 65M15 PDF BibTeX XML Cite \textit{C. Su} and \textit{G. M. Muslu}, BIT 61, No. 4, 1397--1419 (2021; Zbl 1477.35228) Full Text: DOI OpenURL
Wei, Youhua; Li, Dan Stability of the 2D Boussinesq system with partial dissipation. (English) Zbl 07430367 J. Dyn. Differ. Equations 33, No. 4, 1615-1624 (2021). MSC: 35Qxx 35A05 35Q35 76D03 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{D. Li}, J. Dyn. Differ. Equations 33, No. 4, 1615--1624 (2021; Zbl 07430367) Full Text: DOI OpenURL
Ghani, Mohammad Local well-posedness of Boussinesq equations for MHD convection with fractional thermal diffusion in Sobolev space \(H^s (\mathbb{R}^n) \times H^{s+1-\epsilon} (\mathbb{R}^n) \times H^{s + \alpha - \epsilon} (\mathbb{R}^n)\). (English) Zbl 1474.35529 Nonlinear Anal., Real World Appl. 62, Article ID 103355, 14 p. (2021). MSC: 35Q35 76W05 76D03 35B65 35Q30 PDF BibTeX XML Cite \textit{M. Ghani}, Nonlinear Anal., Real World Appl. 62, Article ID 103355, 14 p. (2021; Zbl 1474.35529) Full Text: DOI OpenURL
Li, Qinjun; Soybaş, Danyal; Ilhan, Onur Alp; Singh, Gurpreet; Manafian, Jalil Pure traveling wave solutions for three nonlinear fractional models. (English) Zbl 1478.35076 Adv. Math. Phys. 2021, Article ID 6680874, 18 p. (2021). MSC: 35C07 35G25 35Q35 35R11 PDF BibTeX XML Cite \textit{Q. Li} et al., Adv. Math. Phys. 2021, Article ID 6680874, 18 p. (2021; Zbl 1478.35076) Full Text: DOI OpenURL
Liu, Yan; Qin, Xulong; Shi, Jincheng; Zhi, Wenjing Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in \(R^2\). (English) Zbl 07426871 Appl. Math. Comput. 411, Article ID 126488, 10 p. (2021). MSC: 35B40 35Q30 76D05 PDF BibTeX XML Cite \textit{Y. Liu} et al., Appl. Math. Comput. 411, Article ID 126488, 10 p. (2021; Zbl 07426871) Full Text: DOI OpenURL
Samaras, Achilleas G.; Karambas, Theophanis V. Numerical simulation of ship-borne waves using a 2DH post-Boussinesq model. (English) Zbl 1481.76052 Appl. Math. Modelling 89, Part 2, 1547-1556 (2021). MSC: 76B20 PDF BibTeX XML Cite \textit{A. G. Samaras} and \textit{T. V. Karambas}, Appl. Math. Modelling 89, Part 2, 1547--1556 (2021; Zbl 1481.76052) Full Text: DOI OpenURL
Coclite, G. M.; Maddalena, F.; Puglisi, G.; Romano, M.; Saccomandi, G. The Gardner equation in elastodynamics. (English) Zbl 1478.35141 SIAM J. Appl. Math. 81, No. 6, 2346-2361 (2021). MSC: 35L53 35L72 35C08 35Q53 74J35 74B20 PDF BibTeX XML Cite \textit{G. M. Coclite} et al., SIAM J. Appl. Math. 81, No. 6, 2346--2361 (2021; Zbl 1478.35141) Full Text: DOI OpenURL
Zhang, Jiaqi; Zhang, Ruigang; Yang, Liangui; Liu, Quansheng; Chen, Liguo Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model. (English) Zbl 07424222 Appl. Math. Comput. 408, Article ID 126347, 14 p. (2021). MSC: 76-XX 86Axx PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Math. Comput. 408, Article ID 126347, 14 p. (2021; Zbl 07424222) Full Text: DOI OpenURL
Allendes, Alejandro; Otárola, Enrique; Salgado, Abner J. The stationary Boussinesq problem under singular forcing. (English) Zbl 1473.35432 Math. Models Methods Appl. Sci. 31, No. 4, 789-827 (2021). MSC: 35Q35 35Q30 35R06 76Dxx 65N15 65N30 65N50 PDF BibTeX XML Cite \textit{A. Allendes} et al., Math. Models Methods Appl. Sci. 31, No. 4, 789--827 (2021; Zbl 1473.35432) Full Text: DOI arXiv OpenURL
Aktaev, Nurken E. Potential well formation over a locally heated water surface. (English) Zbl 1481.76064 Appl. Math. Modelling 90, 366-374 (2021). MSC: 76D05 76R10 PDF BibTeX XML Cite \textit{N. E. Aktaev}, Appl. Math. Modelling 90, 366--374 (2021; Zbl 1481.76064) Full Text: DOI OpenURL
Yamazaki, Kazuo Boussinesq system with partial viscous diffusion or partial thermal diffusion forced by a random noise. (English) Zbl 1477.35184 Appl. Math. Optim. 84, Suppl. 1, S1-S38 (2021). MSC: 35Q35 35Q31 60H15 60H40 76B03 76R10 35B65 35B45 35A01 80A19 35R60 PDF BibTeX XML Cite \textit{K. Yamazaki}, Appl. Math. Optim. 84, S1--S38 (2021; Zbl 1477.35184) Full Text: DOI OpenURL
Bresch, Didier; Lannes, David; Métivier, Guy Waves interacting with a partially immersed obstacle in the Boussinesq regime. (English) Zbl 07413798 Anal. PDE 14, No. 4, 1085-1124 (2021). MSC: 35Qxx 35B30 35G61 35Q35 76B15 PDF BibTeX XML Cite \textit{D. Bresch} et al., Anal. PDE 14, No. 4, 1085--1124 (2021; Zbl 07413798) Full Text: DOI arXiv OpenURL
Prugger, Artur; Rademacher, Jens D. M. Explicit superposed and forced plane wave generalized Beltrami flows. (English) Zbl 1481.76061 IMA J. Appl. Math. 86, No. 4, 761-784 (2021). MSC: 76B99 76D05 76U05 PDF BibTeX XML Cite \textit{A. Prugger} and \textit{J. D. M. Rademacher}, IMA J. Appl. Math. 86, No. 4, 761--784 (2021; Zbl 1481.76061) Full Text: DOI arXiv OpenURL
Deng, Wen; Wu, Jiahong; Zhang, Ping Stability of Couette flow for 2D Boussinesq system with vertical dissipation. (English) Zbl 1479.35606 J. Funct. Anal. 281, No. 12, Article ID 109255, 40 p. (2021). MSC: 35Q30 35Q35 76D03 76D05 76R10 86A05 35B35 35B20 35B65 PDF BibTeX XML Cite \textit{W. Deng} et al., J. Funct. Anal. 281, No. 12, Article ID 109255, 40 p. (2021; Zbl 1479.35606) Full Text: DOI arXiv OpenURL
Manafian, Jalil; Ilhan, Onur Alp; Avazpour, Laleh The extended auxiliary equation mapping method to determine novel exact solitary wave solutions of the nonlinear fractional PDEs. (English) Zbl 07412222 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 69-82 (2021). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{J. Manafian} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 69--82 (2021; Zbl 07412222) Full Text: DOI OpenURL
Burmasheva, N. V.; Prosviryakov, E. Yu. Exact solutions for steady convective layered flows with a spatial acceleration. (English. Russian original) Zbl 1475.76084 Russ. Math. 65, No. 7, 8-16 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 7, 12-22 (2021). MSC: 76R10 76D05 35Q35 80A19 PDF BibTeX XML Cite \textit{N. V. Burmasheva} and \textit{E. Yu. Prosviryakov}, Russ. Math. 65, No. 7, 8--16 (2021; Zbl 1475.76084); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 7, 12--22 (2021) Full Text: DOI OpenURL
Triggiani, Roberto; Wan, Xiang Unique continuation properties of over-determined static Boussinesq problems with application to uniform stabilization of dynamic Boussinesq systems. (English) Zbl 07408111 Appl. Math. Optim. 84, No. 2, 2099-2146 (2021). MSC: 35Q30 76D05 80A19 93B52 PDF BibTeX XML Cite \textit{R. Triggiani} and \textit{X. Wan}, Appl. Math. Optim. 84, No. 2, 2099--2146 (2021; Zbl 07408111) Full Text: DOI OpenURL
Zhong, Xin Global well-posedness and decay estimates of strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection. (English) Zbl 07400631 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1543-1567 (2021). MSC: 35Q35 35B65 35D35 76D03 76W05 PDF BibTeX XML Cite \textit{X. Zhong}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1543--1567 (2021; Zbl 07400631) Full Text: DOI OpenURL
Deng, Dingwen; Wu, Qiang Analysis of the linearly energy- and mass-preserving finite difference methods for the coupled Schrödinger-Boussinesq equations. (English) Zbl 07398291 Appl. Numer. Math. 170, 14-38 (2021). MSC: 65Mxx 35Qxx 35Bxx PDF BibTeX XML Cite \textit{D. Deng} and \textit{Q. Wu}, Appl. Numer. Math. 170, 14--38 (2021; Zbl 07398291) Full Text: DOI OpenURL
Ghosh, Arindam; Maitra, Sarit The first integral method and some nonlinear models. (English) Zbl 1476.35079 Comput. Appl. Math. 40, No. 3, Paper No. 79, 16 p. (2021). MSC: 35C07 13P25 35A25 35Q51 35Q53 PDF BibTeX XML Cite \textit{A. Ghosh} and \textit{S. Maitra}, Comput. Appl. Math. 40, No. 3, Paper No. 79, 16 p. (2021; Zbl 1476.35079) Full Text: DOI OpenURL
Shakhmurov, Veli B. The Cauchy problem for nonlocal abstract Schrödinger equations and applications. (English) Zbl 07391604 Anal. Math. Phys. 11, No. 4, Paper No. 147, 33 p. (2021). MSC: 35Q55 35Q41 35B65 35K90 35A01 35A02 PDF BibTeX XML Cite \textit{V. B. Shakhmurov}, Anal. Math. Phys. 11, No. 4, Paper No. 147, 33 p. (2021; Zbl 07391604) Full Text: DOI OpenURL
Korn, Peter Global well-posedness of the ocean primitive equations with nonlinear thermodynamics. (English) Zbl 1479.35674 J. Math. Fluid Mech. 23, No. 3, Paper No. 71, 21 p. (2021). MSC: 35Q35 35Q86 74A15 76D03 80A10 86A05 86A10 35A01 35A02 PDF BibTeX XML Cite \textit{P. Korn}, J. Math. Fluid Mech. 23, No. 3, Paper No. 71, 21 p. (2021; Zbl 1479.35674) Full Text: DOI OpenURL
Benli, Fatma Berna Analysis of fractional-order Schrödinger-Boussinesq and generalized Zakharov equations using efficient method. (English) Zbl 07386969 Math. Methods Appl. Sci. 44, No. 7, 6178-6194 (2021). MSC: 65-XX 26A33 44A10 81Q05 PDF BibTeX XML Cite \textit{F. B. Benli}, Math. Methods Appl. Sci. 44, No. 7, 6178--6194 (2021; Zbl 07386969) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Solitary and periodic wave solutions of the generalized fourth-order Boussinesq equation via He’s variational methods. (English) Zbl 1473.35493 Math. Methods Appl. Sci. 44, No. 7, 5617-5625 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 7, 5617--5625 (2021; Zbl 1473.35493) Full Text: DOI OpenURL
Barbagallo, Annamaria; Gala, Sadek; Ragusa, Maria Alessandra; Théra, Michel On the regularity of weak solutions of the Boussinesq equations in Besov spaces. (English) Zbl 1476.35193 Vietnam J. Math. 49, No. 3, 637-649 (2021). MSC: 35Q35 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{A. Barbagallo} et al., Vietnam J. Math. 49, No. 3, 637--649 (2021; Zbl 1476.35193) Full Text: DOI arXiv HAL OpenURL
Chae, Dongho; Constantin, Peter Remarks on type I blow-up for the 3D Euler equations and the 2D Boussinesq equations. (English) Zbl 1476.35184 J. Nonlinear Sci. 31, No. 5, Paper No. 77, 16 p. (2021). MSC: 35Q31 76B03 35B44 PDF BibTeX XML Cite \textit{D. Chae} and \textit{P. Constantin}, J. Nonlinear Sci. 31, No. 5, Paper No. 77, 16 p. (2021; Zbl 1476.35184) Full Text: DOI arXiv OpenURL
Mejía, Luis Fernando; Muñoz Grajales, Juan Carlos Analytical and Rothe time-discretization method for a Boussinesq-type system over an uneven bottom. (English) Zbl 1472.65113 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105951, 24 p. (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65M60 65M06 65N30 76B15 76B25 35Q35 PDF BibTeX XML Cite \textit{L. F. Mejía} and \textit{J. C. Muñoz Grajales}, Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105951, 24 p. (2021; Zbl 1472.65113) Full Text: DOI OpenURL
Mironov, Alekseĭ Nikolaevich; Mironova, Lyubov’ Borisovna; Yakovleva, Yuliya Olegovna The Riemann method for equations with a dominant partial derivative (a review). (Russian. English summary) Zbl 07380825 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 2, 207-240 (2021). MSC: 35L25 35L40 PDF BibTeX XML Cite \textit{A. N. Mironov} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 2, 207--240 (2021; Zbl 07380825) Full Text: DOI MNR OpenURL
Zhao, Hai-qiong; Zhou, Tong Spatially discrete Boussinesq equation: integrability, Darboux transformation, exact solutions and continuum limit. (English) Zbl 1476.37087 Nonlinearity 34, No. 9, 6450-6472 (2021). MSC: 37K60 37K35 37K10 39A14 39A36 PDF BibTeX XML Cite \textit{H.-q. Zhao} and \textit{T. Zhou}, Nonlinearity 34, No. 9, 6450--6472 (2021; Zbl 1476.37087) Full Text: DOI OpenURL
Lasiecka, Irena; Rodrigues, José H. Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback. (English) Zbl 1470.35041 J. Differ. Equations 298, 387-429 (2021). MSC: 35B30 35L35 35L76 74K20 47D06 PDF BibTeX XML Cite \textit{I. Lasiecka} and \textit{J. H. Rodrigues}, J. Differ. Equations 298, 387--429 (2021; Zbl 1470.35041) Full Text: DOI OpenURL
Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Maximal \(L^p\)-regularity for an abstract evolution equation with applications to closed-loop boundary feedback control problems. (English) Zbl 1470.35214 J. Differ. Equations 294, 60-87 (2021). MSC: 35K90 35B65 35Q35 93B52 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., J. Differ. Equations 294, 60--87 (2021; Zbl 1470.35214) Full Text: DOI arXiv OpenURL
Ye, Zhuan Global regularity of 2D temperature-dependent MHD-Boussinesq equations with zero thermal diffusivity. (English) Zbl 1475.35295 J. Differ. Equations 293, 447-481 (2021). MSC: 35Q35 35B65 35B45 76D03 76W05 PDF BibTeX XML Cite \textit{Z. Ye}, J. Differ. Equations 293, 447--481 (2021; Zbl 1475.35295) Full Text: DOI OpenURL
Kumar, Dipankar; Paul, Gour Chandra Solitary and periodic wave solutions to the family of nonlinear conformable fractional Boussinesq-like equations. (English) Zbl 1470.35398 Math. Methods Appl. Sci. 44, No. 4, 3138-3158 (2021). MSC: 35R11 26A33 34K13 35C05 35C08 35B10 35A20 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{G. C. Paul}, Math. Methods Appl. Sci. 44, No. 4, 3138--3158 (2021; Zbl 1470.35398) Full Text: DOI OpenURL
Zillinger, Christian On the Boussinesq equations with non-monotone temperature profiles. (English) Zbl 1476.35270 J. Nonlinear Sci. 31, No. 4, Paper No. 64, 38 p. (2021). MSC: 35Q79 35Q35 76D05 35B40 35B35 80A19 PDF BibTeX XML Cite \textit{C. Zillinger}, J. Nonlinear Sci. 31, No. 4, Paper No. 64, 38 p. (2021; Zbl 1476.35270) Full Text: DOI arXiv OpenURL
Kim, Yong-Ho; Li, Kwang-Ok; Kim, Chol-Ung Uniqueness and regularity for the 3D Boussinesq system with damping. (English) Zbl 1475.35237 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 1, 149-173 (2021). MSC: 35Q30 76D05 35B65 35A02 35D30 35D35 PDF BibTeX XML Cite \textit{Y.-H. Kim} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 1, 149--173 (2021; Zbl 1475.35237) Full Text: DOI OpenURL
Mirhosseini-Alizamini, Seyed Mehdi; Ullah, Najib; Sabi’u, Jamilu; Rezazadeh, Hadi; Inc, Mustafa New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method. (English) Zbl 1465.35340 Int. J. Mod. Phys. B 35, No. 12, Article ID 2150163, 11 p. (2021). MSC: 35Q35 35A22 35R11 35C05 PDF BibTeX XML Cite \textit{S. M. Mirhosseini-Alizamini} et al., Int. J. Mod. Phys. B 35, No. 12, Article ID 2150163, 11 p. (2021; Zbl 1465.35340) Full Text: DOI OpenURL
Wu, Fan Regularity criterion for 3D Boussinesq equations via partial horizontal derivatives of two velocity components. (English) Zbl 1473.35458 Bull. Braz. Math. Soc. (N.S.) 52, No. 2, 267-279 (2021). MSC: 35Q35 35B65 76D03 35D30 PDF BibTeX XML Cite \textit{F. Wu}, Bull. Braz. Math. Soc. (N.S.) 52, No. 2, 267--279 (2021; Zbl 1473.35458) Full Text: DOI OpenURL
Oruç, Ömer A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations. (English) Zbl 07371639 Eng. Anal. Bound. Elem. 129, 55-66 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Ö. Oruç}, Eng. Anal. Bound. Elem. 129, 55--66 (2021; Zbl 07371639) Full Text: DOI OpenURL
Zhou, Yuan; Manukure, Solomon; McAnally, Morgan Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. (English) Zbl 1469.35084 J. Geom. Phys. 167, Article ID 104275, 7 p. (2021). MSC: 35C11 35C07 35C08 35Q35 35Q51 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Geom. Phys. 167, Article ID 104275, 7 p. (2021; Zbl 1469.35084) Full Text: DOI OpenURL
Constantin, Peter; Drivas, Theodore D.; Ginsberg, Daniel Flexibility and rigidity in steady fluid motion. (English) Zbl 1467.76013 Commun. Math. Phys. 385, No. 1, 521-563 (2021). MSC: 76B03 76M60 76M45 76W05 35Q31 PDF BibTeX XML Cite \textit{P. Constantin} et al., Commun. Math. Phys. 385, No. 1, 521--563 (2021; Zbl 1467.76013) Full Text: DOI arXiv OpenURL
Hou, Chunjuan; Li, Yuanfei; Guo, Lianhong Local existence and blow-up criterion of solutions to a class of generalized incompressible Boussinesq equations. (Chinese. English summary) Zbl 1474.35533 J. Shandong Univ., Nat. Sci. 56, No. 2, 97-102 (2021). MSC: 35Q35 35A01 35B44 PDF BibTeX XML Cite \textit{C. Hou} et al., J. Shandong Univ., Nat. Sci. 56, No. 2, 97--102 (2021; Zbl 1474.35533) Full Text: DOI OpenURL
Guo, Lianhong Research on the inviscid limit for Boussinesq equations. (Chinese. English summary) Zbl 1474.35530 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 91-99 (2021). MSC: 35Q35 35D35 PDF BibTeX XML Cite \textit{L. Guo}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 91--99 (2021; Zbl 1474.35530) OpenURL
Dong, Boqing; Wu, Jiahong; Xu, Xiaojing; Zhu, Ning Stability and exponential decay for the 2D anisotropic Boussinesq equations with horizontal dissipation. (English) Zbl 1472.35292 Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 116, 21 p. (2021). MSC: 35Q35 35B35 35B40 35B05 35B20 76D03 76D50 PDF BibTeX XML Cite \textit{B. Dong} et al., Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 116, 21 p. (2021; Zbl 1472.35292) Full Text: DOI arXiv OpenURL
Bychkov, Evgeniĭ Viktorovich Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method. (English) Zbl 1467.35096 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 1, 26-38 (2021). MSC: 35C09 35L20 35L71 35Q35 PDF BibTeX XML Cite \textit{E. V. Bychkov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 1, 26--38 (2021; Zbl 1467.35096) Full Text: DOI MNR OpenURL
Bira, Bibekananda; Mandal, Hemanta; Zeidan, Dia Exact solution of the time fractional variant Boussinesq-Burgers equations. (English) Zbl 07361064 Appl. Math., Praha 66, No. 3, 437-449 (2021). MSC: 35R11 76M60 35D99 PDF BibTeX XML Cite \textit{B. Bira} et al., Appl. Math., Praha 66, No. 3, 437--449 (2021; Zbl 07361064) Full Text: DOI OpenURL
Zhang, Huan; Zhou, Jun Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. (English) Zbl 1466.35049 Commun. Pure Appl. Anal. 20, No. 4, 1601-1631 (2021). MSC: 35B40 35L35 35L76 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Zhou}, Commun. Pure Appl. Anal. 20, No. 4, 1601--1631 (2021; Zbl 1466.35049) Full Text: DOI OpenURL
Deng, Xuemin; Xiao, Yuelong; Zang, Aibin Global well-posedness of the \(n\)-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. (English) Zbl 1471.35273 Commun. Pure Appl. Anal. 20, No. 3, 1229-1240 (2021). MSC: 35Q86 35P05 35D30 35B65 86A05 35A01 35A02 PDF BibTeX XML Cite \textit{X. Deng} et al., Commun. Pure Appl. Anal. 20, No. 3, 1229--1240 (2021; Zbl 1471.35273) Full Text: DOI OpenURL
Baranovskii, Evgenii S. Optimal boundary control of the Boussinesq approximation for polymeric fluids. (English) Zbl 1466.49002 J. Optim. Theory Appl. 189, No. 2, 623-645 (2021). MSC: 49J20 35Q35 35Q79 PDF BibTeX XML Cite \textit{E. S. Baranovskii}, J. Optim. Theory Appl. 189, No. 2, 623--645 (2021; Zbl 1466.49002) Full Text: DOI OpenURL