×

Lagrange operational matrix methods to Lane-Emden, Riccati’s and Bessel’s equations. (English) Zbl 07078997

Summary: The current study is presented to develop two approaches and methodologies to find the numerical solution of linear and non-linear initial value problems such as Lane-Emden type equation, Riccati’s equation and Bessel’s equation of order zero based on approximation. The function approximations (scheme-I and scheme-II) are presented to find the numerical solutions of linear and non-linear initial value problems by using Gauss Legendre roots as node points and random node points in the domain \([0, 1]\). In the scheme-I, the roots of Legendre polynomial are used as node points for Lagrange polynomials and in scheme-II, we have taken random node points in the domain \([0, 1]\) and orthogonalize the resulting Lagrange polynomials using Gram-Schmidt orthogonalization process. Firstly, we have introduced the function approximations by using generating interpolating scaling functions (ISF) and orthonormal Lagrangian basis functions (OLBF) over the space \(L^{2}[0,1]\), then we have constructed the operational matrices of integration and product operational matrices based on newly designed approximations namely ISF and OLBF. These operational matrices convert given linear and non-linear initial value problems into the associated system of algebraic equations. Finally, we have established error bounds (Lemmas 1, 2) of both scheme-I and scheme-II including the function approximations. The efficiency of the proposed schemes has been confirmed with several test examples including numerical stability. So, the schemes are simple, efficient and produces very accurate numerical results in considerably small number of basis functions and hence reduces computational effort.

MSC:

65-XX Numerical analysis
15-XX Linear and multilinear algebra; matrix theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy, S.: A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials. J. Comput. Appl. Math. 207(1), 59-63 (2007) · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012
[2] Abbasbandy, S.: Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. Appl. Math. Comput. 175(1), 581-589 (2006) · Zbl 1089.65072
[3] Abd-Elhameed, W.M., Youssri, Y., Doha, E.H.: New solutions for singular Lane-Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput. Methods Differ. Equ. 2(3), 171-185 (2014) · Zbl 1412.65160
[4] Abd-Elhameed, W.M., Youssri, Y.H.: A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18(10), 345 (2016) · doi:10.3390/e18100345
[5] Abd-Elhameed, W.M., Youssri, Y.H.: Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn. 89(2), 1341-1355 (2017) · Zbl 1384.41003 · doi:10.1007/s11071-017-3519-9
[6] Adibi, H., Rismani, A.M.: On using a modified Legendre-spectral method for solving singular IVPs of Lane-Emden type. Comput. Math. Appl. 60(7), 2126-2130 (2010) · Zbl 1205.65201 · doi:10.1016/j.camwa.2010.07.056
[7] Aminikhah, H.: Approximate analytical solution for quadratic Riccati differential equation. Iran. J. Numer. Anal. Optim. 3(2), 21-31 (2013) · Zbl 1308.65112
[8] Anderson, B.D., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Courier Corporation, New York (2007)
[9] Andrews, G.E., Askey, R., Roy, R.: Special Functions, Volume 71 of Encyclopedia of Mathematics and Its Applications, press syndicate of the university of Cambridge (1999)
[10] Bell, W.W.: Special Functions for Scientists and Engineers. Courier Corporation, New York (2004) · Zbl 1099.33001
[11] Carinena, J.F., Marmo, G., Perelomov, A.M., Ranada, M.F.: Related operators and exact solutions of Schrödinger equations. Int. J. Modern Phys. A 13(28), 4913-4929 (1998) · Zbl 0927.34065 · doi:10.1142/S0217751X98002298
[12] Chandrasekhar, S.: Introduction to Study of Stellar Structure, p. 1967. Dover, New York (1967)
[13] Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equations by homotopy-perturbation method. Nonlinear Anal. Real World Appl. 10(1), 104-115 (2009) · Zbl 1154.34306 · doi:10.1016/j.nonrwa.2007.08.017
[14] Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Courier Corporation, New York (1962)
[15] Dehghan, M., Aryanmehr, S., Eslahchi, M.R.: A technique for the numerical solution of initial-value problems based on a class of Birkhoff-type interpolation method. J. Comput. Appl. Math. 244, 125-139 (2013) · Zbl 1268.65092 · doi:10.1016/j.cam.2012.11.013
[16] Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type. New Astron. 23, 113-117 (2013) · doi:10.1016/j.newast.2013.03.002
[17] Dubois, F., Saïdi, A.: Unconditionally stable scheme for Riccati equation. In: ESAIM: Proceedings, vol. 8, pp. 39-52. EDP Sciences, New York (2000) · Zbl 0948.34038 · doi:10.1051/proc:2000003
[18] El-Tawil, M.A., Bahnasawi, A.A., Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. Math. Comput. 157(2), 503-514 (2004) · Zbl 1054.65071
[19] Geng, F., Lin, Y., Cui, M.: A piecewise variational iteration method for Riccati differential equations. Comput. Math. Appl. 58(11-12), 2518-2522 (2009) · Zbl 1189.65164 · doi:10.1016/j.camwa.2009.03.063
[20] Iqbal, S., Javed, A.: Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation. Appl. Math. Comput. 217(19), 7753-7761 (2011) · Zbl 1218.65069
[21] He, J.H.: Variational approach to the Lane-Emden equation. Appl. Math. Comput. 143, 539-541 (2003) · Zbl 1022.65076
[22] Korenev, B.G.: Bessel Functions and Their Applications. CRC Press, Boca Raton (2003) · doi:10.1201/b12551
[23] Lakestani, M., Dehghan, M.: Four techniques based on the B-spline expansion and the collocation approach for the numerical solution of the Lane-Emden equation. Math. Methods Appl. Sci. 36(16), 2243-2253 (2013) · Zbl 1278.65111 · doi:10.1002/mma.2755
[24] Lane, J.H.: ART. IX.—On the theoretical temperature of the sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment (1820-1879). Am. J. Sci. Arts 50(148), 57 (1870) · doi:10.2475/ajs.s2-50.148.57
[25] Lasiecka, I., Triggiani, R.: Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory. Lect. Notes Control Inf. Sci. 164, 12-160 (1991) · Zbl 0754.93038
[26] Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142(1), 1-16 (2003) · Zbl 1022.65078 · doi:10.1016/j.cam.2006.10.084
[27] Marzban, H.R., Tabrizidooz, H.R., Razzaghi, M.: Hybrid functions for nonlinear initial-value problems with applications to Lane-Emden type equations. Phys. Lett. A 372(37), 5883-5886 (2008) · Zbl 1223.35299 · doi:10.1016/j.physleta.2008.07.055
[28] Pandey, R.K., Kumar, N.: Solution of Lane-Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17(3), 303-308 (2012) · doi:10.1016/j.newast.2011.09.005
[29] Pandey, R.K., Kumar, N., Bhardwaj, A., Dutta, G.: Solution of Lane-Emden type equations using Legendre operational matrix of differentiation. Appl. Math. Comput. 218(14), 7629-7637 (2012) · Zbl 1246.65115
[30] Parand, K., Dehghan, M., Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys. Commun. 181(6), 1096-1108 (2010) · Zbl 1216.65098 · doi:10.1016/j.cpc.2010.02.018
[31] Parand, K., Rezaei, A.R., Taghavi, A.: Lagrangian method for solving Lane-Emden type equation arising in astrophysics on semi-infinite domains. Acta Astron. 67(7-8), 673-680 (2010) · doi:10.1016/j.actaastro.2010.05.015
[32] Parand, K., Shahini, M., Dehghan, M.: Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type. J. Comput. Phys. 228(23), 8830-8840 (2009) · Zbl 1177.65100 · doi:10.1016/j.jcp.2009.08.029
[33] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2010) · Zbl 0957.65001
[34] Ramos, J.I.: Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. Chaos Solitons Fractals 38(2), 400-408 (2008) · Zbl 1146.34300 · doi:10.1016/j.chaos.2006.11.018
[35] Razzaghi, M., Yousefi, S.: The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32(4), 495-502 (2001) · Zbl 1006.65151 · doi:10.1080/00207720120227
[36] Reid, W.T.: Riccati Differential Equations (Mathematics in Science and Engineering, vol. 86) (1972)
[37] Shamsi, M., Razzaghi, M.: Numerical solution of the controlled duffing oscillator by the interpolating scaling functions. J. Electromagn. Waves Appl. 18(5), 691-705 (2004) · doi:10.1163/156939304774114718
[38] Shawagfeh, N.T.: Nonperturbative approximate solution for Lane-Emden equation. J. Math. Phys. 34(9), 4364-4369 (1993) · Zbl 0780.34007 · doi:10.1063/1.530005
[39] Singh, H., Srivastava, H.M., Kumar, D.: A reliable algorithm for the approximate solution of the nonlinear Lane-Emden type equations arising in astrophysics. Numer. Methods Partial Differ. Equ. 34, 1524-1555 (2018) · Zbl 1407.85001 · doi:10.1002/num.22237
[40] Singh, O.P., Pandey, R.K., Singh, V.K.: An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified homotopy analysis method. Comput. Phys. Commun. 180(7), 1116-1124 (2009) · Zbl 1198.65250 · doi:10.1016/j.cpc.2009.01.012
[41] Singh, S., Patel, V.K., Singh, V.K., Tohidi, E.: Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices. Appl. Math. Comput. 298, 310-321 (2017) · Zbl 1411.65139
[42] Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13(3), 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[43] Tohidi, E., Soleymani, F., Kilicman, A: Robustness of operational matrices of differentiation for solving state-space analysis and optimal control problems. In: Bayram, M., Vazquez, C. (eds.) Abstract and Applied Analysis, vol. 2013. Hindawi, London (2013) · Zbl 1272.49066
[44] Tohidi, E., Toutounian, F.: Convergence analysis of Bernoulli matrix approach for one-dimensional matrix hyperbolic equations of the first order. Comput. Math. Appl. 68(1-2), 1-12 (2014) · Zbl 1368.65201 · doi:10.1016/j.camwa.2014.05.007
[45] Tohidi, E., Zak, M.K.: A new matrix approach for solving second-order linear matrix partial differential equations. Mediterr. J. Math. 13(3), 1353-1376 (2016) · Zbl 1350.35061 · doi:10.1007/s00009-015-0542-2
[46] Toutounian, F., Tohidi, E., Kilicman, A: Fourier operational matrices of differentiation and transmission: introduction and applications. In: Bayram, M., Vazquez, C. (eds.) Abstract and Applied Analysis, vol. 2013. Hindawi, London (2013) · Zbl 1275.65036
[47] Wazwaz, A.-M.: A new algorithm for solving differential equations of Lane-Emden type. Appl. Math. Comput. 118(2-3), 287-310 (2001) · Zbl 1023.65067
[48] Yousefi, S.A.: Legendre wavelets method for solving differential equations of Lane-Emden type. Appl. Math. Comput. 181(2), 1417-1422 (2006) · Zbl 1105.65080
[49] Youssri, Y.H.: A new operational matrix of Caputo fractional derivatives of Fermat polynomials: an application for solving the Bagley-Torvik equation. Adv. Differ. Equ. 2017(1), 73 (2017) · Zbl 1422.34076 · doi:10.1186/s13662-017-1123-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.