×

Novel method for random vibration analysis of single-degree-of-freedom vibroimpact systems with bilateral barriers. (English) Zbl 1431.74059

Summary: The vibroimpact systems with bilateral barriers are often encountered in practice. However, the dynamics of the vibroimpact system with bilateral barriers is full of challenges. Few closed-form solutions were obtained. In this paper, we propose a novel method for random vibration analysis of single-degree-of-freedom (SDOF) vibroimpact systems with bilateral barriers under Gaussian white noise excitations. A periodic approximate transformation is employed to convert the equations of the motion to a continuous form. The probabilistic description of the system is subsequently defined through the corresponding Fokker-Planck-Kolmogorov (FPK) equation. The closed-form stationary probability density function (PDF) of the response is obtained by solving the reduced FPK equation and using the proposed iterative method of weighted residue together with the concepts of the circulatory probability flow and the potential probability flow. Finally, the versatility of the proposed approach is demonstrated by its application to two typical examples. Note that the solution obtained by using the proposed method can be used as the benchmark to examine the accuracy of approximate solutions obtained by other methods.

MSC:

74H50 Random vibrations in dynamical problems in solid mechanics
74M20 Impact in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xu, W.; Feng, J.; Rong, H., Melnikov’s method for a general nonlinear vibro-impact oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71, 418-426 (2009) · Zbl 1176.34052 · doi:10.1016/j.na.2008.10.120
[2] DIMENTBERG, M. F. Statistical Dynamics of Nonlinear and Time-Varying Systems, Research Studies Press, Taunton (1988) · Zbl 0713.70004
[3] BROGLIATO, B. Nonsmooth Impact Mechanics: Models, Dynamics and Control, Springer-Verlag, London (1996) · Zbl 0861.73001
[4] BABISTKY, V. Theory of Vibro-Impact Systems and Applications, Springer-Verlag, Berlin (1998) · Zbl 1041.70001
[5] Ibrhim, R. A.; Chalhoub, N. G.; Falzarano, J., Interaction of ships and ocean structures with ice loads and stochastic ocean waves, Applied Mechanics Reviews, 60, 246-289 (2007) · doi:10.1115/1.2777172
[6] ALBERT LUO, C. J. and GUO, Y. Vibro-Impact Dynamics, John Wiley & Sons, New York (2012) · Zbl 1345.70002
[7] Dimentberg, M. F.; Iourtchenko, D. V., Random vibrations with impacts: a review, Nonlinear Dynamics, 36, 229-254 (2004) · Zbl 1125.70019 · doi:10.1023/B:NODY.0000045510.93602.ca
[8] IBRAHIM, R. A. Vibro-Impact Dynamics: Modeling, Mapping and Applications, Springer-Verlag, Berlin (2009) · Zbl 1345.70001 · doi:10.1007/978-3-642-00275-5
[9] Jin, X. L.; Huang, Z. L.; Leung, Y. T., Nonstationary probability densities of system response of strongly nonlinear single-degree-of-freedom system subject to modulated white noise excitation, Applied Mathematics and Mechanics (English Edition), 32, 1389-1398 (2011) · Zbl 1258.70041 · doi:10.1007/s10483-011-1509-7
[10] Liu, Q.; Xu, Y.; Xu, C.; Kurths, J., The sliding mode control for an airfoil system driven by harmonic and colored Gaussian noise excitations, Applied Mathematical Modelling, 64, 249-264 (2018) · Zbl 1480.93408 · doi:10.1016/j.apm.2018.07.032
[11] Liu, Q.; Xu, Y.; Kurths, J., Active vibration suppression of a novel airfoil model with fractional order viscoelastic constitutive relationship, Journal of Sound and Vibration, 432, 50-64 (2018) · doi:10.1016/j.jsv.2018.06.022
[12] Jiang, W. A.; Sun, P.; Zhao, G. L.; Chen, L. Q., Path integral solution of vibratory energy harvesting systems, Applied Mathematics and Mechanics (English Edition, 40, 579-590 (2019) · Zbl 1416.70016 · doi:10.1007/s10483-019-2467-8
[13] Dimentberg, M. F.; Iourtchenko, D. V.; Van Ewijk, O., Subharmonic response of a quasi-isochronous vibroimpact system to a randomly disordered periodic excitation, Nonlinear Dynamics, 17, 173-186 (1998) · Zbl 0929.70019 · doi:10.1023/A:1008247831908
[14] Namachchivaya, N. S.; Park, J. H., Stochastic dynamics of impact oscillators, Journal of Applied Mechanics, 72, 862-870 (2004) · Zbl 1111.74572 · doi:10.1115/1.2041660
[15] Rong, H. W.; Wang, X. D.; Xu, W.; Fang, T., Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations, International Journal of Non-Linear Mechanics, 45, 474-481 (2010) · doi:10.1016/j.ijnonlinmec.2010.01.005
[16] Rong, H. W.; Wang, X. D.; Luo, Q. Z.; Xu, W.; Fang, T., Subharmonic response of single-degree-of-freedom linear vibroimpact system to narrow-band random excitation, Applied Mathematics and Mechanics (English Edition, 32, 1159-1168 (2011) · Zbl 1250.34050 · doi:10.1007/s10483-011-1489-x
[17] Li, C.; Xu, W.; Feng, J. Q.; Wang, L., Response probability density functions of Duffing-Van der Pol vibro-impact system under correlated gaussian white noise excitations, Physica A: Statistical Mechanics and its Applications, 392, 1269-1279 (2013) · doi:10.1016/j.physa.2012.11.053
[18] Yang, G. D.; Xu, W.; Gu, X. D.; Huang, D. M., Response analysis for a vibroimpact Duffing system with bilateral barriers under external and parametric gaussian white noises, Chaos, Solitons & Fractals, 87, 125-135 (2016) · Zbl 1355.34038 · doi:10.1016/j.chaos.2016.03.017
[19] Xie, X.; Li, J.; Liu, D.; Guo, R., Transient response of nonlinear vibro-impact system under Gaussian white noise excitation through complex fractional moments, Acta Mechanica, 228, 1153-1163 (2017) · Zbl 1383.74039 · doi:10.1007/s00707-016-1761-8
[20] Zhao, X. R.; Xu, W.; Yang, Y. G.; Wang, X. Y., Stochastic responses of a viscoelastic-impact system under additive and multiplicative random excitations, Communications in Nonlinear Science and Numerical Simulation, 35, 166-176 (2016) · Zbl 1510.74099 · doi:10.1016/j.cnsns.2015.11.008
[21] Yurchenko, D.; Burlon, A.; Paola, M. D.; Pirrotta, A., Approximate analytical mean-square response of an impacting stochastic system oscillator with fractional damping, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 3, 030903 (2017) · doi:10.1115/1.4036701
[22] Liu, L.; Xu, W.; Yue, X. L.; Han, Q., Stochastic response of Duffing-Van der Pol vibroimpact system with viscoelastic term under wide-band excitation, Chaos, Solitons & Fractals, 104, 748-757 (2017) · Zbl 1380.70049 · doi:10.1016/j.chaos.2017.09.034
[23] Sun, J. Q.; Hsu, C. S., First-passage time probability of non-linear stochastic systems by generalized cell mapping method, Journal of Sound and Vibration, 124, 233-248 (1988) · Zbl 1235.70200 · doi:10.1016/S0022-460X(88)80185-8
[24] Sun, J. Q.; Hsu, C. S., A statistical study of generalized cell mapping, Journal of Applied Mechanics, 55, 694-701 (1988) · Zbl 0659.70028 · doi:10.1115/1.3125851
[25] Sun, J. Q.; Hsu, C. S., The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation, Journal of Applied Mechanics, 57, 1018-1025 (1990) · doi:10.1115/1.2897620
[26] Han, Q.; Xu, W.; Yue, X. L., Stochastic response analysis of noisy system with non-negative real-power restoring force by generalized cell mapping method, Applied Mathematics and Mechanics (English Edition, 36, 329-336 (2015) · doi:10.1007/s10483-015-1918-6
[27] Wang, L.; Ma, S.; Jia, W. T.; Xu, W., The stochastic response of a class of impact systems calculated by a new strategy based on generalized cell mapping method, Journal of Applied Mechanics, 85, 054502 (2018) · doi:10.1115/1.4039436
[28] Iourtchenko, D. V.; Song, L. L., Numerical investigation of a response probability density function of stochastic vibroimpact systems with inelastic impacts, International Journal of Non-Linear Mechanics, 41, 447-455 (2006) · Zbl 1160.70361 · doi:10.1016/j.ijnonlinmec.2005.10.001
[29] Er, G. K., An improved closure method for analysis of nonlinear stochastic systems, Nonlinear Dynamics, 17, 285-297 (1998) · Zbl 0923.70019 · doi:10.1023/A:1008346204836
[30] Zhu, H. T., Stochastic response of a parametrically excited vibro-impact system with a nonzero offset constraint, International Journal of Dynamics and Control, 4, 180-194 (2016) · doi:10.1007/s40435-015-0165-2
[31] Zhu, H. T., Stochastic response of a vibro-impact Duffing system under external poisson impulses, Nonlinear Dynamics, 82, 1001-1013 (2015) · Zbl 1348.74165 · doi:10.1007/s11071-015-2213-z
[32] Dimentberg, M. F.; Gaidai, O.; Naess, A., Random vibrations with strongly inelastic impacts: response PDF by the path integration method, International Journal of Non-Linear Mechanics, 44, 791-796 (2009) · Zbl 1203.74145 · doi:10.1016/j.ijnonlinmec.2009.04.007
[33] Zhuravlev, V. F., A method for analyzing vibration-impact systems by means of special functions, Mechanics of Solids, 11, 23-27 (1976)
[34] Kumer, P.; Narayanan, S.; Gupta, S., Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator, Nonlinear Dynamics, 85, 439-452 (2016) · doi:10.1007/s11071-016-2697-1
[35] Kumer, P.; Narayanan, S.; Gupta, S., Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers, International Journal of Mechanical Sciences, 127, 103-117 (2017) · doi:10.1016/j.ijmecsci.2016.12.009
[36] Chen, L. C.; Qian, J. M.; Zhu, H. S.; Sun, J. Q., The closed-form stationary probability distribution of the stochastically excited vibro-impact oscillators, Journal of Sound and Vibration, 439, 260-270 (2019) · doi:10.1016/j.jsv.2018.09.061
[37] Chen, L. C.; Liu, J.; Sun, J. Q., Stationary response probability distribution of SDOF nonlinear stochastic systems, Journal of Applied Mechanics, 84, 051006 (2017) · doi:10.1115/1.4036307
[38] Paola, M. D.; Sofi, A., Approximate solution of the Fokker-Planck-Kolmogorov equation, Probabilistic Engineering Mechanics, 17, 369-384 (2002) · doi:10.1016/S0266-8920(02)00034-6
[39] Chen, L. C.; Sun, J. Q., The closed-form solution of the reduced Fokker-Planck-Kolmogorov equation for nonlinear systems, Communications in Nonlinear Science and Numerical Simulation, 41, 1-10 (2016) · Zbl 1458.82018 · doi:10.1016/j.cnsns.2016.03.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.