×

An efficient generalized least squares algorithm for periodic trended regression with autoregressive errors. (English) Zbl 1333.65013

Summary: Time series data with periodic trends like daily temperatures or sales of seasonal products can be seen in periods fluctuating between highs and lows throughout the year. Generalized least squares estimators are often computed for such time series data as these estimators have minimum variance among all linear unbiased estimators. However, the generalized least squares solution can require extremely demanding computation when the data is large. This paper studies an efficient algorithm for generalized least squares estimation in periodic trended regression with autoregressive errors. We develop an algorithm that can substantially simplify generalized least squares computation by manipulating large sets of data into smaller sets. This is accomplished by coining a structured matrix for dimension reduction. Simulations show that the new computation methods using our algorithm can drastically reduce computing time. Our algorithm can be easily adapted to big data that show periodic trends often pertinent to economics, environmental studies, and engineering practices.

MSC:

65C60 Computational problems in statistics (MSC2010)
62J05 Linear regression; mixed models
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

Software:

astsa
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bergland, G.D.: A fast Fourier transform algorithm for real-valued series. Commun. ACM 11, 703-710 (1968) · Zbl 0165.51503 · doi:10.1145/364096.364118
[2] Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991) · Zbl 0604.62083 · doi:10.1007/978-1-4419-0320-4
[3] Ghysels, E., Osborn, D.: The Econometric Analysis of Seasonal Time Series. Cambridge University Press, Cambridge (2001) · Zbl 0994.62086 · doi:10.1017/CBO9781139164009
[4] Grenander, U., Rosenblatt, M.: Statistical Analysis of Stationary Time Series. Wiley, New York (1957) · Zbl 0080.12904
[5] Judge, G.G., Hill, R.C., Griffiths, W.E., Lütkepohl, H., Lee, T.C.: Introduction to the Theory and Practice of Econometrics, 2nd edn. Wiley, New York (1988) · Zbl 0731.62155
[6] Kay, S.M.: Maximum likelihood estimation of signals in autoregressive noise. Amer. Statist. 42, 88-101 (1994) · doi:10.1109/78.258124
[7] Lee, J.: A reformulation of weighted least squares estimators. Amer. Statist. 63, 49-55 (2009) · doi:10.1198/tast.2009.0011
[8] Li, S., Lund, R.: Multiple change point detection via Genetic Algorithms. J. Climate 25, 674-686 (2012) · doi:10.1175/2011JCLI4055.1
[9] Malik, W.Q., Schummers, J., Sur, M., Brown, E.N.: Denoising two-photon calcium imaging data. PLoS ONE 6, e20490 (2011). doi:10.1371/journal.pone.0020490 · doi:10.1371/journal.pone.0020490
[10] Mann, M.E., Lees, J.M.: Robust estimation of background noise and signal detection in climate time series. Clim. Chang. 33, 409-445 (1996) · doi:10.1007/BF00142586
[11] Piegorsch, W.W., Bailer, A.J.: Analyzing Environmental Data. Wiley, Chichester (2005) · doi:10.1002/0470012234
[12] Purdon, P.L., Solo, V., Weisskoff, R.M., Brown, E.N.: Locally regularized spatiotemporal modeling and model comparison for functional MRI. NeuroImage 14, 912-923 (2001) · doi:10.1006/nimg.2001.0870
[13] Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications with R Examples, 3rd edn. Springer, New York (2011) · Zbl 1276.62054 · doi:10.1007/978-1-4419-7865-3
[14] Sorensen, H.V., Jones, D.L., Heideman, M.T., Burrus, C.S.: Real-valued fast Fourier transform algorithms. IEEE Trans. Acoust. Speech Signal Processing 35, 849-863 (1987) · doi:10.1109/TASSP.1987.1165220
[15] Yang, R., Su, Z.: Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics 26, i168-i174 (2010). doi:10.1093/bioinformatics/btq189 · doi:10.1093/bioinformatics/btq189
[16] Zinde-Walsh, V., Galbraith, J.W.: Estimation of a linear regression model with stationary ARMA(p,q) errors. J. Economet. 47, 333-357 (1991) · Zbl 0714.62089 · doi:10.1016/0304-4076(91)90106-N
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.