## A computable extension for D-finite functions: DD-finite functions.(English)Zbl 1427.13034

Let $$K$$ be a field of characteristic zero, $$K[[x]]$$ the ring of formal power series over $$K$$ and $$\partial$$ the standard derivation in $$K[[x]]$$. In addition, let $$R$$ be a non-trivial differential subring of $$K[[x]]$$ and $$R[\partial]$$ the ring of linear differential operators over $$R$$. A power series $$f \in K[[x]]$$ is called differentially definable over $$R$$ if there is a non-zero operator $$A \in R[\partial]$$ such that $$A \cdot f = 0$$. Furthermore, if $$R$$ is the polynomial ring $$K[x]$$, then $$f$$ is called D-finite. Finally, if $$R$$ is the set of D-finite functions, then $$f$$ is called DD-finite.
D-finite functions satisfy several closure properties. In this paper, the authors derive the analogous closure properties for DD-finite functions. In addition, it is proved that the function $$\tan(x)$$ is DD-finite and illustrated the execution of closure properties for this function. At the end, they address the issue of initial values $$( f (0), f^{\prime} (0), f ^{\prime \prime} (0), \ldots )$$ to define the solution within $$K[[x]]$$ of the given linear differential equation uniquely.

### MSC:

 13N15 Derivations and commutative rings 68W30 Symbolic computation and algebraic computation 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. 13F25 Formal power series rings

### Software:

gfun; GeneratingFunctions; DLMF; ore_algebra; SageMath
Full Text:

### References:

  Abramov, S.; Barkatou, M.; Khmelnov, D., On full rank differential systems with power series coefficients, J. Symb. Comput., 68, 120-137, (2015) · Zbl 1308.34019  Abramov, S.; Khmelnov, D., Regular solutions of linear differential systems with power series coefficients, Program. Comput. Softw., 40, 2, 98-106, (2014) · Zbl 1317.34019  Andrews, G.; Askey, R.; Roy, R., Special Functions, Encyclopedia of Mathematics and Its Applications, (1999), Cambridge University Press  Chyzak, F., Gröbner bases, symbolic summation and symbolic integration, (Gröbner Bases and Applications. Gröbner Bases and Applications, Linz, 1998. Gröbner Bases and Applications. Gröbner Bases and Applications, Linz, 1998, London Math. Soc. Lecture Note Ser., vol. 251, (1998), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 32-60 · Zbl 0898.68040  DLMF, (Olver, f. W.J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V., NIST Digital Library of Mathematical Functions, (2017)), Release 1.0.16 of 2017-09-18  Flajolet, P.; Gerhold, S.; Salvy, B., On the non-holonomic character of logarithms, powers, and the nth prime function, Electron. J. Comb., 11, 2, (2005) · Zbl 1076.05004  Horn, R.; Johnson, C., Matrix Analysis, (1985), Cambridge Univ. Press · Zbl 0576.15001  Jiménez-Pastor, A.; Pillwein, V., Algorithmic Arithmetics with DD-Finite Functions, (Schost, Éric, Proceedings of ISSAC 2018, (2018), ACM: ACM New York, NY, USA), 231-237  Kauers, M., Guessing Handbook, (2009), Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, RISC Report Series 09-07  Kauers, M., The Holonomic Toolkit, (Blümlein, J.; Schneider, C., Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, (2013), Springer), 119-144 · Zbl 1308.81101  Kauers, M.; Jaroschek, M.; Johansson, F., Ore Polynomials in Sage, (Gutierrez, J.; Schicho, J.; Weimann, M., Computer Algebra and Polynomials. Computer Algebra and Polynomials, Lecture Notes in Computer Science, (2014)), 105-125 · Zbl 1439.16049  Kauers, M.; Paule, P., The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, (2011), Springer Publishing Company, Incorporated · Zbl 1225.00001  Koutschan, C., Advanced Applications of the Holonomic Systems Approach, (September 2009), Johannes Kepler University, Ph.D. thesis, RISC-Linz  Mallinger, C., Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences, (August 1996), RISC, J. Kepler University, Master’s thesis  McLachlan, N. W., Theory and Application of Mathieu Functions, (1964), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0128.29603  Pillwein, V., Computer Algebra Tools for Special Functions in High Order Finite Element Methods, (2008), Johannes Kepler University Linz, Ph.D. thesis  Rainville, E., Special Functions, (1971), Chelsea Publishing Co.: Chelsea Publishing Co. Bronx, NY · Zbl 0231.33001  Rainville, E.; Bedient, P., Elementary Differential Equations, (1969), The Macmillan Company/Collier-Macmillan Limited: The Macmillan Company/Collier-Macmillan Limited New York/London  Salvy, B.; Zimmermann, P., Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Softw., 20, 2, 163-177, (1994) · Zbl 0888.65010  Stanley, R., Differentiably finite power series, Eur. J. Comb., 1, 2, 175-188, (1980) · Zbl 0445.05012  Stanley, R., Enumerative Combinatorics, vol. 2, (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0928.05001  Stein, W., Sage Mathematics Software, (2017), (Version 8.1). The Sage Development Team  van Hoeij, M., Formal solutions and factorization of differential operators with power series coefficients, J. Symb. Comput., 24, 1, 1-30, (1997) · Zbl 0924.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.