×

Effective longitudinal shear moduli of periodic fibre-reinforced composites with radially-graded fibres. (English) Zbl 1183.74225

Summary: This paper presents a closed-form expression for the homogenized longitudinal shear moduli of a linear elastic composite material reinforced by long, parallel, radially-graded circular fibres with a periodic arrangement. An imperfect linear elastic fibre-matrix interface is allowed. The asymptotic homogenization method is adopted, and the relevant cell problem is addressed. Periodicity is enforced by resorting to the theory of Weierstrass elliptic functions. The equilibrium equation in the fibre domain is solved in closed form by applying the theory of hypergeometric functions, for new wide classes of grading profiles defined in terms of special functions. The effectiveness of the present analytical procedure is proved by convergence analysis and comparison with finite element solutions. A parametric analysis investigating the influence of microstructural and material features on the effective moduli is presented. The feasibility of mitigating the shear stress concentration in the composite by tuning the fibre grading profile is shown.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74Q05 Homogenization in equilibrium problems of solid mechanics

Software:

COMSOL
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs and tables, (1965) · Zbl 0171.38503
[2] Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R.: On a hierarchy of models for electrical conduction in biological tissues, Math. meth. Appl. sci. 29, 767-787 (2006) · Zbl 1097.35022
[3] Apostol, T. M.: Modular functions and Dirichlet series in number theory, (1997)
[4] Bensoussan, A.; Lions, J. -L.; Papanicolau, G.: Asymptotic analysis for periodic structures, (1978)
[5] Benveniste, Y.; Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. mater. 33, 309-323 (2001)
[6] Bigoni, D.; Serkov, S. K.; Valentini, M.; Movchan, A. B.: Asymptotic models of dilute composites with imperfectly bonded inclusions, Int. J. Solids struct. 35, No. 24, 3239-3258 (1998) · Zbl 0918.73042
[7] Bisegna, P.; Caselli, F.: A simple formula for the effective complex conductivity of periodic fibrous composites with interfacial impedance and applications to biological tissues, J. phys. D 41 (2008)
[8] Bonnet, G.: Effective properties of elastic periodic composite media with fibers, J. mech. Phys. solids 55, 881-899 (2007) · Zbl 1170.74042
[9] Chen, T.; Kuo, H. -Y.: Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials, J. appl. Phys. 98, 033716 (2005)
[10] COMSOL AB, 2008. Comsol Multiphysics\textregistered  User’s Guide (version 3.5). Available from: <http://www.comsol.com>.
[11] Genin, G. M.; Birman, V.: Micromechanics and structural response of functionally graded, particulate-matrix, fiber-reinforced composites, Int. J. Solids struct. 46, 2136-2150 (2009) · Zbl 1215.74015
[12] Gu, G.; Liu, Z.: Effects of contact resistance on thermal conductivity of composite media with a periodic structure, J. phys. D 25, 249-255 (1992)
[13] Gu, G. Q.; Yu, K. W.: Conductivities of dilute suspensions of graded fibers, J. appl. Phys. 94, 3376-3383 (2003)
[14] Hashin, Z.: The spherical inclusion with imperfect interface, J. appl. Mech. 58, 444-449 (1991)
[15] Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites, J. mech. Phys. solids 50, 2509-2537 (2002) · Zbl 1080.74006
[16] Helsing, J.: An integral equation method for elastostatics of periodic composites, J. mech. Phys. solids 43, 815-828 (1995) · Zbl 0870.73042
[17] Herve, E.; Zaoui, A.: N-layered inclusion-based micromechanical modeling, Int. J. Eng. sci. 31, 1-10 (1993) · Zbl 0763.73050
[18] Iwakuma, T.; Nemat-Nasser, S.: Composites with periodic microstructure, Comput. struct. 16, 13-19 (1983) · Zbl 0498.73116
[19] Jiang, C. P.; Xu, Y. L.; Cheung, Y. K.; Lo, S. H.: A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its applications, Mech. mater. 36, 225-237 (2004)
[20] Kalamkarov, A. L.: Composite and reinforced elements of construction, (1992) · Zbl 0809.73006
[21] Kanaun, S. K.; Kudriavtseva, L. T.: Elastic and thermoelastic characteristics of composites reinforced with unidirectional fibre layers, Appl. math. Mech. 53, 628-636 (1989) · Zbl 0727.73042
[22] Kanaun, S. K.; Levin, V. M.: The self-consistent field method in mechanics of matrix composite materials, Advances in mathematical modelling of composite materials, 1-58 (1994)
[23] Kantor, Y.; Bergman, D. J.: Elastostatic resonances – a new approach to the calculation of the effective elastic constants of composites, J. mech. Phys. solids 30, 355-376 (1982) · Zbl 0488.73067
[24] Kushch, V. I.; Sevostianov, I.; Jr., L. Mishnaevsky: Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents, Int. J. Solids struct. 45, 5103-5117 (2008) · Zbl 1169.74533
[25] Lene, F.; Leguillon, D.: Homogenized constitutive law for a partially cohesive composite material, Int. J. Solids struct. 18, 443-458 (1982) · Zbl 0488.73065
[26] Lutz, M. P.; Zimmerman, R. W.: Effect of the interphase zone on the bulk modulus of a particulate composite, ASME J. Appl. mech. 8, No. 63, 855-861 (1996) · Zbl 0893.73037
[27] Lutz, M. P.; Zimmerman, R. W.: Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite, Int. J. Solids struct. 42, 429-437 (2005) · Zbl 1081.74038
[28] Martin, P. A.: On functionally graded balls and cones, J. eng. Math. 42, 133-142 (2002) · Zbl 1007.80006
[29] Meguid, S. A.; Kalamkarov, A. L.: Asymptotic homogenization of elastic composite with a regular structure, Int. J. Solids struct. 31, No. 3, 303-316 (1994) · Zbl 0791.73007
[30] Michel, J. C.; Moulinec, H.; Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach, Comput. meth. Appl. mech. Eng. 172, 109-143 (1999) · Zbl 0964.74054
[31] Milton, G. W.: The theory of composites, Cambridge monographs on applied and computational mathematics 6 (2004) · Zbl 1102.30050
[32] Mura, T.: Micromechanics of defects in solids, Mechanics of elastic and inelastic solids (1987) · Zbl 0652.73010
[33] Nicorovici, N. A.; Mcphedran, R. C.; Milton, G. W.: Transport properties of a three-phase composite material: the square array of coated cylinders, Proc. roy. Soc. lond. A 442, 599-620 (1993)
[34] Parnell, W. J.; Abrahams, I. D.: Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves, Wave motion 43, 474-498 (2006) · Zbl 1231.74373
[35] Perrins, W. T.; Mckenzie, D. R.; Mcphedran, R. C.: Transport properties of regular arrays of cylinders, Proc. roy. Soc. lond. A 369, 207-225 (1979)
[36] Rayleigh, Lord: On the influence of obstacles arranged in rectangular order upon the properties of a medium, Philos. mag. 34, 481-502 (1892) · JFM 24.1015.02
[37] Reiter, T.; Dvorak, G. J.; Tvergaard, V.: Micromechanical models for graded composite materials, J. mech. Phys. solids 45, 1281-1302 (1997)
[38] Rodríguez-Ramos, R.; Sabina, F. J.; Guinovart-Díaz, R.; Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents – I. Elastic and square symmetry, Mech. mater. 33, 223-235 (2001) · Zbl 1017.74055
[39] Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lecture notes in physics, (1980) · Zbl 0432.70002
[40] Sevostianov, I.; Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion, Int. J. Solids struct. 44, 1304-1315 (2007) · Zbl 1124.74041
[41] Shabana, Y. M.; Noda, N.: Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method, Int. J. Solids struct. 45, 3494-3506 (2008) · Zbl 1169.74534
[42] Shen, L.; Li, J.: Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase, Int. J. Solids struct. 40, 1393-1409 (2003) · Zbl 1032.74626
[43] Shen, L.; Li, J.: Homogenization of a fibre/sphere with an inhomogeneous interphase for the effective elastic moduli of composites, Proc. roy. Soc. lond. A 461, 1475-1504 (2005)
[44] Suresh, S.: Modeling and design of multi-layered and graded materials, Prog. mater. Sci. 42, 243-251 (1997)
[45] Suresh, S.: Graded materials for resistance to contact deformation and damage, Science 292, 2447-2451 (2001)
[46] Tricomi, F. G.: Funzioni speciali, (1965) · Zbl 0073.28604
[47] Wei, E. -B.; Song, J. -B.; Tian, J. -W.: Dielectric response of composites with graded cylindrical particles, J. phys.: condens. Matter 15, 8907-8915 (2003)
[48] Wei, E. -B.; Gu, G. -Q.; Yu, K. -W.: Dielectric responses of graded composites having generalized gradation profiles, Chin. phys. 15, 182-189 (2006)
[49] Whittaker, E. T.; Watson, G. N.: A course of modern analysis, (1927) · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.