Lizorkin, P. I.; Nikol’skij, S. M. Spaces of functions of mixed smoothness from the decomposition point of view. (English. Russian original) Zbl 0707.46025 Proc. Steklov Inst. Math. 187, 163-184 (1990); translation from Tr. Mat. Inst. Steklova 187, 143-161 (1989). This survey deals with the spaces \(S^ r_ pL\) and \(S^{\alpha}_{p,\theta}B\) of Sobolev and Besov type, respectively, having dominating mixed smoothness properties. The authors describe decomposition procedures, characterizations via approximation and Fourier-analytical methods of Paley-Littlewood type. Finally the peiodic case is considered. Reviewer: H.Triebel Cited in 5 Documents MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:spaces with dominating mixed smoothness properties; decomposition procedures; characterizations via approximation and Fourier-analytical methods of Paley-Littlewood type; peiodic case PDF BibTeX XML Cite \textit{P. I. Lizorkin} and \textit{S. M. Nikol'skij}, Proc. Steklov Inst. Math. 187, 163--184 (1990; Zbl 0707.46025); translation from Tr. Mat. Inst. Steklova 187, 143--161 (1989) OpenURL