Dresner, Lawrence Applications of Lie’s theory of ordinary and partial differential equations. (English) Zbl 0914.34002 Bristol: Institute of Physics Publishing (IOP). xi, 225 p. (1999). Reviewer: Xanthippi Agrafiotou (Thessaloniki) MSC: 34-02 35-02 22E70 34A25 34A99 35A30 58D19 PDF BibTeX XML Cite \textit{L. Dresner}, Applications of Lie's theory of ordinary and partial differential equations. Bristol: Institute of Physics Publishing (IOP) (1999; Zbl 0914.34002) OpenURL
Liu, Sheng; Lei, Jinzhi; Guan, Keying A new method of identifying one-dimensional Lie groups admitted by ordinary differential equation systems. (Chinese. English summary) Zbl 0928.34006 Pure Appl. Math. 14, No. 4, 1-6 (1998). MSC: 34A25 22E15 34A34 PDF BibTeX XML Cite \textit{S. Liu} et al., Pure Appl. Math. 14, No. 4, 1--6 (1998; Zbl 0928.34006) OpenURL
Clarkson, Peter A.; Ludlow, David K.; Priestley, Thomas J. The classical, direct, and nonclassical methods for symmetry reductions of nonlinear partial differential equations. (English) Zbl 0901.58069 Methods Appl. Anal. 4, No. 2, 173-195 (1997). Reviewer: Th.M.Rassias (Athens) MSC: 58J70 22E70 35N99 35Q35 PDF BibTeX XML Cite \textit{P. A. Clarkson} et al., Methods Appl. Anal. 4, No. 2, 173--195 (1997; Zbl 0901.58069) Full Text: DOI OpenURL
Schwarz, Fritz Symmetries of \(2^{nd}\) and \(3^{rd}\) order ODE’s. (English) Zbl 0924.34006 Levelt, A. H. M. (ed.), Proceedings of the 1995 international symposium on symbolic and algebraic computation, ISSAC ’95, Montreal, Canada, July 10–12, 1995. New York, NY: ACM Press. 16-25 (1995). Reviewer: Karin Gatermann (Berlin) MSC: 34A25 58J70 68W30 22E15 PDF BibTeX XML Cite \textit{F. Schwarz}, in: Proceedings of the 1995 international symposium on symbolic and algebraic computation, ISSAC '95, Montreal, Canada, July 10--12, 1995. New York, NY: ACM Press. 16--25 (1995; Zbl 0924.34006) OpenURL
Fradkin, E. S.; Linetskij, V. Ya. Infinite-dimensional generalizations of finite-dimensional symmetries. (English) Zbl 0745.17012 J. Math. Phys. 32, No. 5, 1218-1226 (1991). Reviewer: A.A.Bogush (Minsk) MSC: 17B65 17B68 22E65 81T40 17B35 17B81 PDF BibTeX XML Cite \textit{E. S. Fradkin} and \textit{V. Ya. Linetskij}, J. Math. Phys. 32, No. 5, 1218--1226 (1991; Zbl 0745.17012) Full Text: DOI OpenURL
Onishchik, A. L.; Vinberg, È. B. Foundations of Lie theory. (English. Russian original) Zbl 0781.22003 Lie groups and Lie algebras I. Foundations of Lie theory. Lie transformation groups. Encycl. Math. Sci. 20, 1-94 (1993); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 20, 5-101 (1988). MSC: 22Exx 17B35 22E65 22-02 17B45 17B67 PDF BibTeX XML Cite \textit{A. L. Onishchik} and \textit{È. B. Vinberg}, Encycl. Math. Sci. 20, 1 (1988; Zbl 0781.22003); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 20, 5--101 (1988) OpenURL
Libermann, Paulette Sur les pseudogroupes de Lie. (French) Zbl 0068.02101 Colloque de Topologie de Strasbourg, Années 1954-1955, 20 p. (1955). Reviewer: H. Guggertheimer MSC: 58H05 22A22 22E65 PDF BibTeX XML OpenURL