Modelling and design of adaptive composite structures. (English) Zbl 0981.74010

From the summary: The complexity in the design and fabrication of adaptive laminated composites has resulted in a need to develop reliable and refined models to study their material properties and mechanical behaviour. Here, we develop higher-order finite element formulations and an analytical closed-form solution to study the mechanics of adaptive composite structures with embedded and/or bonded piezoelectric actuators and sensors. Optimization of adaptive composite structures is also an important design aspect in order to maximize actuator performance. Thus two optimization schemes are considered in this study, where the design variables are layer thickness and actuator size and location. To demonstrate the validity of the proposed models, we present several illustrative examples.


74E30 Composite and mixture properties
74P10 Optimization of other properties in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI


[1] Reddy, J.N., Mechanics of laminated composite plates – theory and applications, (1997), CRC Press Boca Raton · Zbl 0899.73002
[2] Pagano, N.J.; Hatfield, S.J., Elastic behaviour of multilayered bidirectional composites, Aiaa j., 10, 931-933, (1972)
[3] Mallikarjuna; Kant, T., A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches, Composite structures, 23, 293-312, (1993)
[4] Mota Soares, C.M.; Mota Soares, C.A.; Franco Correia, V.M., Optimization of multilaminated structures using higher-order deformation models, Comput. meth. appl. mech. eng., 149, 133-152, (1997) · Zbl 0919.73070
[5] Chattopadhyay, A.; Seeley, C.E., A higher order theory for modelling composite laminates with induced strain actuators, Composites part B, 28B, 243-252, (1997)
[6] Robbins, D.H.; Reddy, J.N., Analysis of piezoelectrically actuated beams using a layer-wise displacement theory, Comput. struc., 41, 2, 265-279, (1991) · Zbl 0850.73293
[7] Lo, K.H.; Christensen, R.M.; Wu, E.M., A high-order theory of plate deformation. part 1: homogeneous plates, J. appl. mech., 663-668, (1977) · Zbl 0369.73052
[8] Lo, K.H.; Christensen, R.M.; Wu, E.M., A high-order theory of plate deformation. part 2: laminated plates, J. appl. mech., 669-676, (1977) · Zbl 0369.73053
[9] Whitney, J.M., Shear correction factors for orthotropic laminates under static load, J. appl. mech., 40, 1, 302-304, (1973)
[10] Reddy, J.N., An evaluation of equivalent single-layer and layerwise theories of composite laminates, Composite structures, 25, 31-35, (1993)
[11] Noor, A.K.; Burton, W.S., Assessment of computational models for multilayered anisotropic plates, Composite structures, 14, 233-265, (1990)
[12] Reddy, J.N.; Robbins, D.H., Theories and computational models for composite laminates, Appl. mech. revue, 47, 6, 147-169, (1994)
[13] A.N. Palazotto, S.T. Dennis, Nonlinear Analysis of Shell Structures, AIAA Education Series, Washington DC, USA, 1992 · Zbl 0798.73003
[14] Crawley, E.F., Intelligent structures for aerospace: a technology overview and assessment, Aiaa j., 32, 8, 1689-1699, (1994)
[15] Mitchell, J.A.; Reddy, J.N., A refined hybrid plate theory for composite laminates with piezoelectric laminae, Internat. J. solids structures, 32, 16, 2345-2367, (1995) · Zbl 0869.73038
[16] Saravanos, D.A.; Heyliger, P.R.; Hopkins, D.A., Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates, Internat. J. solids structures, 34, 3, 359-378, (1997) · Zbl 0946.74519
[17] Saravanos, D.A.; Heyliger, P.R., Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators, J. internat. mater. sys. structures, 6, 350-363, (1995)
[18] Allik, H.; Hughes, T.J.R., Finite element method for piezoelectric vibration, Internat. J. numer. meth. eng., 2, 151-157, (1970)
[19] Tzou, H.S.; Tseng, C.I., Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach, J. sound vibration, 138, 1, 17-34, (1990)
[20] Ha, S.K.; Keilers, C.; Chang, F., Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators, Aiaa j., 30, 3, 772-780, (1992) · Zbl 0825.73665
[21] Chandrashekhara, K.; Agarwal, A.N., Active control of laminated composite plates using piezoelectric devices: A finite element approach, J. intell. mater. sys. structures, 4, 496-508, (1993)
[22] Suleman, A.; Venkayya, V.B., A simple finite element formulation for a laminated composite plate with piezoelectric layers, J. intell. mater. sys. structures, 6, 776-782, (1995)
[23] Tzou, H.S.; Ye, R., Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements, Aiaa j., 34, 1, 110-115, (1996) · Zbl 0907.73070
[24] Lin, C.C.; Hsu, C.; Huang, H., Finite element analysis on deflection control of plates with piezoelectric actuators, Composite structures, 35, 423-433, (1996)
[25] Reddy, J.N.; Mitchell, J.A., Refined nonlinear theories of laminated composite structures with piezoelectric laminae, Sadhana - J. Indian Academy sci., 20, 721-747, (1995) · Zbl 1048.74511
[26] K.D. Jonnalagadda, T.R. Tauchert, G.E. Blandford, Higher-order displacement formulation for a piezothermoelastic laminate. Mechanics of Electromagnetic Materials and Structures, ASME, AMD-161/MD-42 (1993) 145-156
[27] Adelman, H.M.; Haftka, R.T., Sensitivity analysis for discrete structural systems, Aiaa j., 24, 5, 823-832, (1986)
[28] Haftka, R.T.; Adelman, R.M., Recent developments in structural sensitivity analysis, J. structural optimization, 1, 137-151, (1989)
[29] Zyczowski, M., Recent advances in optimal structural design of shells, European J. mech.A/solids, 11, 5-24, (1992)
[30] Grandhi, R., Structural optimization with frequency constraints – a review, Aiaa j., 31, 12, 2296-2303, (1993) · Zbl 0836.73050
[31] Abrate, S., Optimal design of laminated plates and shells, Composite structures, 29, 269-286, (1994)
[32] Tauchert, T.R., Plane piezothermoelastic response of a hybrid laminate – a benchmark problem, Composite structures, 39, 3-4, 329-336, (1997)
[33] Tiersten, H.F., Linear piezoelectric plate vibrations, (1969), Plenum Press New York · Zbl 0534.73083
[34] Lee, C.K., Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. part I: governing equations and reciprocal relations, J. acoust. soc. am., 87, 3, (1990)
[35] Hagood, N.W.; Chung, W.H.; von Flotwo, A., Modelling of piezoelectric actuators dynamics for active structural control, J. intell. mater. sys. structures, 1, 3, (1990)
[36] Pai, P.F.; Nayfeh, A.O.; Oh, K.; Mook, D.T., A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors, Internat. J. solids structures, 20, 12, (1993)
[37] Xu, K.; Noor, A.K.; Tang, Y., Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates, Comput. meth. appl. mech. eng., 126, 355-371, (1995)
[38] Donthireddy, P.; Chandrashekhara, K., Modelling and shape control of composite beams with embedded piezoelectric actuators, Composite structures, 35, 237-244, (1996)
[39] Carman, G.; Reifsnider, K., Analytical optimization of coating properties for actuators and sensors, J. intell. mater. sys. structures, 4, 89-97, (1993)
[40] Kim, S.J.; Jones, J.D., Influence of piezo-actuator thickness on the active vibration control of a cantilever beam, J. intell. mater. sys. and structures, 6, 610-623, (1995)
[41] Meric, R.A.; Saigal, S., Shape sensitivity analysis of piezoelectric structures by the adjoint variable method, Aiaa j., 29, 8, 1313-1318, (1991)
[42] Silva, E.C.N.; Fonseca, J.S.O.; Kikuchi, N., Optimal design of piezoelectric microstructues, Comput. mech., 19, 397-410, (1997) · Zbl 0889.73053
[43] Batra, R.C.; Liang, X.Q., The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators, Comput. structures, 63, 2, 203-216, (1997) · Zbl 0899.73252
[44] Liang, C.; Sun, F.P.; Rogers, C.A., Determination of design of optimal actuator location and configuration based on actuator power factor, J. intell. mater. sys. structures, 6, 456-464, (1995)
[45] T.J. Leeks, T.A. Weisshaar, Optimizing induced strain actuators for maximum panel deflection, in: Proceedings of the AIAA/ASME Adaptive Structures Forum, AIAA-94-1774-CP, 1994, pp. 378-387
[46] Franco Correia, V.M.; Mota Soares, C.M.; Mota Soares, C.A., Design sensitivity analysis and optimal design of composite structures using higher order discrete models, Eng. optimization, 29, 85-111, (1997)
[47] Franco Correia, V.M.; Mota Soares, C.M.; Mota Soares, C.A., Higher order models on the eigenfrequency analysis and optimal design of laminated composite structures, Composite structures, 39, 3-4, 237-253, (1997)
[48] Mota Soares, C.M.; Mota Soares, C.A.; Franco Correia, V.M., Multiple eigenvalue optimization of composite structures using discrete third order displacement models, Composite structures, 38, 99-110, (1997)
[49] Vanderplaats, G.N., Numerical optimization techniques for engineering design: with applications, (1994), McGraw-Hill New York · Zbl 0826.73046
[50] Messac, A., Physical programming: effective optimization for computational design, Aiaa j., 34, 149-158, (1996) · Zbl 0886.90181
[51] O.C. Zienkiewicz, The Finite Element Method in Engineering Science, 3rd ed., McGraw-Hill, London, 1987
[52] M. Gomes, Alexandra, Modelling and optimization of electromechanical adaptive structures, MSc. Thesis, Instituto Superior Tecnico, Technical University of Lisbon, Portugal, 1997 (in Portuguese)
[53] Arnold, V.I., Mathematical methods of classical mechanics – graduate texts in mathematics, (1978), Springer New York
[54] Evans, L.C., Partial differential equations – math Berkeley lecture notes, (1993), University of California Berkeley
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.