×

A second order primitive preconditioner for solving all speed multi-phase flows. (English) Zbl 1138.76414

Summary: We present a new second order primitive preconditioner technique for solving all speed multi-phase flow problems. With this technique, one can compute both compressible and incompressible flows with Mach-uniform accuracy and efficiency (i.e., accuracy and efficiency of the method are independent of Mach number). The new primitive preconditioner can handle both strong and weak shocks, providing highly resolved shock solutions together with correct shock speeds. In addition, the new technique performs very well at the zero Mach limit. In the case of multi-phase flow, the new primitive preconditioner technique enables one to accurately treat phase boundaries in which there is a large impedance mismatch. The present method is tested on a variety of problems from low (low speed) to high Mach number (high speed) flows including multi-phase flow tests, i.e., computing the growth and collapse of adiabatic bubbles for study of underwater explosions. The numerical results show that the newly proposed method supersedes existing up-to-date numerical techniques in its category.

MSC:

76M99 Basic methods in fluid mechanics
76T30 Three or more component flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R.; Karni, S., Computations of compressible multi-fluids, J. Comput. Phys., 169, 594-623 (2001) · Zbl 1033.76029
[3] Aslam, T., A level set algorithm for tracking discontinuities in hyperbolic conservation laws I (Scalar Equations), J. Comput. Phys., 167, 413-438 (2001) · Zbl 0989.65089
[4] Aslam, T., A level set algorithm for tracking discontinuities in hyperbolic conservation laws II (System of Equations), J. Sci. Comput., 19, 37-62 (2003) · Zbl 1081.65083
[5] Batchelor, G. K., An introduction to fluid dynamics (1967), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 0152.44402
[6] Bijl, H.; Wesseling, P., A unified method for computing incompressible and compressible flows in boundary-fitted coordinates, J. Comput. Phys., 141, 153-173 (1998) · Zbl 0918.76054
[7] Brennen, C. E., Cavitation and bubble dynamics (1995), Oxford University Press: Oxford University Press Oxford
[8] Casulli, V.; Greenspan, D., Pressure method for the numerical solution of transient, compressible fluid flows, Int. J. Numer. Methods Fluids, 4, 1001 (1984) · Zbl 0549.76050
[9] Chorin, A., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[10] Chorin, A.; Marsden, J. E., A mathematical introduction to fluid mechanics (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0417.76002
[11] Colella, P.; Pao, K., A projection method for low speed flows, J. Comput. Phys., 149, 245-269 (1999) · Zbl 0935.76056
[12] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multi-material flows (the Ghost Fluid Method), J. Comput. Phys., 152, 457 (1999) · Zbl 0957.76052
[13] Fedkiw, R.; Aslam, T.; Xu, S., The Ghost Fluid Method for deflagration and detonation discontinuities, J. Comput. Phys., 154, 393 (1999) · Zbl 0955.76071
[14] Guerra, J.; Gustafsson, B., A numerical method for incompressible and compressible flow problems with smooth solutions, J. Comput. Phys., 63, 377 (1986) · Zbl 0608.76055
[15] Hammitt, F. G., Cavitation and multiphase flow phenomena (1980), McGraw-Hill: McGraw-Hill New York
[16] Harlow, F. H.; Amsden, A. A., Numerical calculation of almost incompressible flows, J. Comput. Phys., 3, 80-93 (1968) · Zbl 0172.52903
[17] Harlow, F. H.; Welch, J. E., Numerical calculation of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182 (1965) · Zbl 1180.76043
[18] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135, 203-216 (1997) · Zbl 0938.76068
[19] Hu, X. Y.; Khoo, B. C., An interface interaction method for compressible multi-fluids, J. Comput. Phys., 198, 35-64 (2004) · Zbl 1107.76378
[20] Jiang, G.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[21] Karni, S., Multicomponent flow calculation by a consistent primitive algorithm, J. Comput. Phys., 112, 31-43 (1994) · Zbl 0811.76044
[22] Klainermann, S.; Majda, A., Compressible and incompressible fluids, Comm. Pure Appl. Math., 35, 629 (1982) · Zbl 0478.76091
[23] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow, J. Comput. Phys., 121, 213 (1995) · Zbl 0842.76053
[24] Koren, B., Improving Euler computations at low Mach numbers, Int. J. Comp. Fluid Dyn., 6, 51-70 (1996)
[25] Koren, B.; Lewis, M. R.; van Brummelen, E. H.; van Leer, B., Riemann problem and level set approaches for homentropic two-fluid flow computations, J. Comput. Phys., 181, 654-674 (2002) · Zbl 1178.76281
[26] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[27] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical approximations, Comm. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[28] Liu, X. D.; Osher, S., Convex ENO High order multi-dimensional schemes without field by field decomposition or staggered grids, J. Comput. Phys., 142, 304-330 (1998) · Zbl 0941.65082
[29] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200 (1994) · Zbl 0811.65076
[30] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[31] R. Nourgaliev, N. Dinh, T. Theofanous. Direct numerical simulation of compressible multiphase flows: interaction of shocks waves with dispersed multiphase media, in: Fifth International Conference on Multiphase Flow, ICMF04, 2004. Yokohama, Japan.; R. Nourgaliev, N. Dinh, T. Theofanous. Direct numerical simulation of compressible multiphase flows: interaction of shocks waves with dispersed multiphase media, in: Fifth International Conference on Multiphase Flow, ICMF04, 2004. Yokohama, Japan. · Zbl 1136.76593
[32] Ogata, Y.; Yabe, T., Shock capturing with improved numerical viscosity in primitive Euler representation, Comput. Phys. Commun., 119, 179-193 (1999) · Zbl 1175.76112
[33] Rudnik, R.; Melber, S.; Ronzheimer, A.; Brodersen, O., Three-Dimensional Navier-Stokes simulations for transport aircraft high lift configurations, AIAA J., 38, 895-903 (2001)
[34] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439 (1988) · Zbl 0653.65072
[35] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32 (1989) · Zbl 0674.65061
[36] Smereka, P., Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput., 19, 439-456 (2003) · Zbl 1035.65098
[37] Sod, G. A., A survey of several finite difference methods for systems of nonlinear conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063
[38] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J. Comput. Phys., 187, 110-136 (2003) · Zbl 1047.76085
[39] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 301-337 (2000) · Zbl 0977.76071
[40] Takewaki, H.; Nishiguchi, A.; Yabe, T., Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic type equations, J. Comput. Phys., 61, 261-268 (1985) · Zbl 0607.65055
[41] Turkel, E., Preconditioning techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 31, 385-416 (1999)
[42] Turkel, E.; Radespiel, R.; Kroll, H., Assessment of preconditioning methods for multidimensional aerodynamics, Comput. Fluids, 26, 613-634 (1997) · Zbl 0893.76063
[43] Udaykumar, H. S.; Tran, L.; Belk, D. M.; Vanden, K. J., An Eulerian method for computation of multi-material impact with ENO shock capturing and sharp interfaces, J. Comput. Phys., 186, 136-177 (2003) · Zbl 1047.76558
[44] van der Heul, D. R.; Vuik, C.; Wesseling, P., A conservative pressure-correction method for the Euler and ideal MHD equations at all speeds, Int. J. Numer. Meth. Fluids, 40, 521-529 (2002) · Zbl 1042.76046
[45] van der Heul, D. R.; Vuik, C.; Wesseling, P., A conservative pressure-correction method for flow at all speeds, Comput. Fluids, 32, 1113-1132 (2003) · Zbl 1046.76033
[46] Wackers, J.; Koren, B., A fully conservative model for compressible two-fluid flow, Int. J. Numer. Meth. Fluids, 00, 1-6 (2004)
[47] Wang, S. P.; Anderson, M. H.; Oakley, J. G.; Corradini, M. L.; Bonazza, R., A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows, J. Comput. Phys., 195, 528-559 (2004) · Zbl 1115.76377
[48] A. Wardlaw, Underwater explosion test cases. In Technical Report IHTR 2069, ADB238684, Office of Naval Research, 1998.; A. Wardlaw, Underwater explosion test cases. In Technical Report IHTR 2069, ADB238684, Office of Naval Research, 1998.
[49] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 2050-2057 (1995) · Zbl 0849.76072
[50] Wenneker, I.; Segal, A.; Wesseling, P., A Mach-uniform unstructured staggered grid method, Int. J. Numer. Meth. Fluids., 40, 1209-1235 (2002) · Zbl 1025.76023
[51] P. Wesseling, Principles of computiational fluid dynamics. Springer Series in Computational Mathematics, 2000.; P. Wesseling, Principles of computiational fluid dynamics. Springer Series in Computational Mathematics, 2000. · Zbl 0960.76002
[52] P. Wesseling, van der Heul, C. Vuik. Unified methods for computing compressible and incompressible flows, in: Proceedings European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2000, Barcelona.; P. Wesseling, van der Heul, C. Vuik. Unified methods for computing compressible and incompressible flows, in: Proceedings European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2000, Barcelona.
[53] Wesseling, P.; van der Heul, D. R., Uniformly effective numerical methods for hyperbolic systems, Computing, 66, 249-267 (2001) · Zbl 1017.76056
[54] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115 (1984) · Zbl 0573.76057
[55] Xiao, F., Unified formulation for compressible and incompressible flows by using multi-integral moments I: One-dimensional inviscid compressible flow, J. Comput. Phys., 195, 629-654 (2004) · Zbl 1115.76378
[56] T. Yabe, Interface capturing and universal solution of solid, liquid, and gas by CIP method, in: Proceedings Conf. High-Performance Computing on Multi-phase Flow, 1997, Tokyo.; T. Yabe, Interface capturing and universal solution of solid, liquid, and gas by CIP method, in: Proceedings Conf. High-Performance Computing on Multi-phase Flow, 1997, Tokyo.
[57] Yabe, T.; Aoki, T., A universal solver for hyperbolic equations by cubic-polynomial interpolation, Comput. Phys. Commun., 66, 219-242 (1991) · Zbl 0991.65521
[58] Yabe, T.; Ogata, Y.; Takizawa, K.; Kawai, T.; Segawa, A.; Sakurai, K., The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid, and gas, J. Comput. Appl. Math., 149, 267-277 (2002) · Zbl 1058.76055
[59] Yabe, T.; Xiao, F.; Utsumi, T., The constrained interpolation profile method for multiphase analysis, J. Comput. Phys., 169, 556-593 (2001) · Zbl 1047.76104
[60] Yoon, S. Y.; Yabe, T., The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method, Comput. Phys. Commun., 119, 149-158 (1999) · Zbl 1175.76119
[61] Young, F. R., Cavitation (1989), McGraw-Hill: McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.