×

Vectorizing codes for studying long-range transport of air pollutants. (English) Zbl 0737.65098

The authors present a vectorized code for studying long-range transport of air pollutants. The results obtained in the preparation of kernel subroutines for the 2D model are discussed, and it is shown that a 2D model which is numerically tractable on vector processors can be developed by a careful choice of the algorithms and by vectorizing the most time consuming parts of the code.

MSC:

65Z05 Applications to the sciences
65Y05 Parallel numerical computation
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35Q80 Applications of PDE in areas other than physics (MSC2000)
92E20 Classical flows, reactions, etc. in chemistry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Marchuk, G. I., Mathematical Modelling of the Problem of Environment (1982), Nauka: Nauka Moscow · Zbl 0493.90001
[2] McRae, J.; Goodin, W. R.; Seinfeld, J. H., Numerical solution of the atmospheric diffusion equation for chemical reacting flows, J. Comput. Phys., 45, 1-42 (1982) · Zbl 0502.76098
[3] Hov, Ø.; Zlatev, Z.; Berkowicz, R.; Eliassen, A.; Prahm, L. P., Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions, Atmos. Environ., 23, 967-983 (1989)
[4] Dongarra, J. J.; Eisenstat, S. C., Squeezing the most out of an algorithm in Cray Fortran, ACM Trans. Math. Software, 10, 219-230 (1984)
[5] Zlatev, Z.; Vu, Ph.; Wasniewski, J.; Schaumburg, K., Computations with symmetric, positive definite and band on a parallel vector processor, Parallel Computing, 8, 301-312 (1988) · Zbl 0658.65031
[6] Dongarra, J. J.; Du Croz, J. J.; Hammarling, S.; Hanson, R. J., A proposal for an extended set of Fortran basic linear algebra subprograms, ACM SIGNUM Newsletter, 20, 1-18 (1985) · Zbl 0639.65016
[7] Dongarra, J. J.; Bunch, J. R.; Moler, C. B.; Stewart, G. W., LINPACK: Users Guide (1979), SIAM Publications: SIAM Publications Philadelphia · Zbl 0476.68025
[8] Daly, C.; Du Croz, J. J., Performance of a subroutine library on vector-processing machines, Computer Physics Communications, 37, 181-186 (1985)
[9] Dongarra, J. J.; Gustavson, F. G.; Karp, A., Implementing linear algebra algorithms for dense matrices on a vector pipeline machine, SIAM Rev., 26, 91-112 (1984) · Zbl 0539.65009
[10] Young, D. M.; Kincaid, D. R., The ITPACK software package, (Engquist, B.; Smedsaas, T., PDE Software: Modules, Interfaces and Systems (1984), North Holland: North Holland Amsterdam), 193-206
[11] Rice, J. R.; Boisvert, R. F., Solving Elliptic Problems Using ELLPACK (1984), Springer: Springer Berlin · Zbl 0562.65064
[12] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 40-51 (1986)
[13] Madsen, N. K.; Rodrigue, G. H.; Karush, J. I., Matrix multiplication by diagonals on a vector parallel processor, Information Processing Letters, 5, 41-45 (1976) · Zbl 0337.65024
[14] Zlatev, Z., Application of predictor-corrector schemes with several correctors in solving air pollution problems, BIT, 24, 700-715 (1984) · Zbl 0568.65044
[15] Zlatev, Z., Mathematical model for studying the sulphur pollution over Europe, J. Comput. Appl. Math., 12, 651-666 (1985) · Zbl 0545.92018
[16] Zlatev, Z., Treatment of some mathematical models describing long-range transport of air pollutants on vector processors, Parallel Computing, 6, 87-99 (1988) · Zbl 0641.65094
[17] Pepper, D. W.; Baker, A. J., A simple one-dimensional finite element algorithm with multidimensional capabilities, Numer. Heat Transfer, 3, 81-95 (1979)
[18] Pepper, D. W.; Kern, C. D.; Long, P. E., Modelling the dispersion of atmospheric pollution using cubic splines and chapeau functions, Atmos. Environ., 13, 223-237 (1979)
[19] Chock, D. P.; Dunker, A. M., A comparison of numerical methods for solving advection equation, J. Comput. Phys., 31, 335-362 (1983)
[20] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand., 49, 409-436 (1952) · Zbl 0048.09901
[21] Reid, J. K.; Reid, J. K., On the method of conjugate gradients for the solution of large and sparse systems of linear equations, Large Sparse Sets of Linear Equations, 231-254 (1971) · Zbl 0224.65004
[22] Dubois, P. F.; Greenbaum, A.; Rodrigue, G. H., Approximating the inverse of a matrix for the use of iterative algorithms on vector processors, Computing, 22, 308-323 (1979) · Zbl 0438.65037
[23] Varga, R. S., Matrix Iterative Analysis (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0133.08602
[24] Young, D. M., Iterative Solution of Large Linear Systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102
[25] Martins, M. M., An iterative method of second order for singular systems, (Report, Department of Mathematics (1987), University of Coimbra: University of Coimbra Coimbra, Portugal)
[26] Lawson, C.; Hanson, R.; Kincaid, D.; Krogh, F., Basic linear algebra subprograms for Fortran usage, ACM Trans. Math. Software, 5, 308-323 (1979) · Zbl 0412.65022
[27] Zlatev, Z.; Berkowicz, R., Numerical treatment of large-scale air pollution models, CAMWA, 16, 93-109 (1988) · Zbl 0647.76025
[28] Zlatev, Z.; Berkowicz, R.; Prahm, L. P., Implementation of a variable stepsize, variable formula method in the time-integration part of a code for long-range transport of air pollutants, J. Comput. Phys., 55, 279-301 (1984) · Zbl 0558.65068
[29] Swarztrauber, P. N., Vectorizing FFT’s, (Rodrigue, G., Parallel Computations (1982), Academic Press: Academic Press New York)
[30] Temperton, C., Fast Fourier transforms on Cray 1, (Report No. 21 (1979), European Centre for Medium-range Weather Forecasts: European Centre for Medium-range Weather Forecasts Reading, England)
[31] NAG Library, Fortran Manual, Mark 12 (1987), Numerical Algorithms Group: Numerical Algorithms Group 7 Banbury Road, Oxford OX2 6NN, United Kingdom
[32] Crowley, W. P., Numerical advection experiments, Month. Weath. Rev., 96, 1-11 (1968) · Zbl 0177.56504
[33] Molenkamp, C. R., Accuracy of finite difference schemes applied to advection equations, J. Appl. Meteor, 7, 160-167 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.