Mercuri, Carlo; Perera, Kanishka New multiplicity results for critical \(p\)-Laplacian problems. (English) Zbl 07549012 J. Funct. Anal. 283, No. 4, Article ID 109536, 24 p. (2022). MSC: 35J92 35B33 58E05 PDF BibTeX XML Cite \textit{C. Mercuri} and \textit{K. Perera}, J. Funct. Anal. 283, No. 4, Article ID 109536, 24 p. (2022; Zbl 07549012) Full Text: DOI OpenURL
Yao, Fengping Hölder estimates for the elliptic \(p(x)\)-Laplacian equation with the logarithmic function. (English) Zbl 07548882 Appl. Anal. 101, No. 8, 3048-3064 (2022). MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{F. Yao}, Appl. Anal. 101, No. 8, 3048--3064 (2022; Zbl 07548882) Full Text: DOI OpenURL
Boudjeriou, Tahir Global existence and blow-up of solutions for a parabolic equation involving the fractional \(p(x)\)-Laplacian. (English) Zbl 07548874 Appl. Anal. 101, No. 8, 2903-2921 (2022). MSC: 35R11 35B40 35B41 35B44 35K92 PDF BibTeX XML Cite \textit{T. Boudjeriou}, Appl. Anal. 101, No. 8, 2903--2921 (2022; Zbl 07548874) Full Text: DOI OpenURL
Chammem, R.; Ghanmi, A.; Sahbani, A. Existence and multiplicity of solutions for some Styklov problem involving \(p(x)\)-Laplacian operator. (English) Zbl 07548850 Appl. Anal. 101, No. 7, 2401-2417 (2022). MSC: 31B30 35J35 PDF BibTeX XML Cite \textit{R. Chammem} et al., Appl. Anal. 101, No. 7, 2401--2417 (2022; Zbl 07548850) Full Text: DOI OpenURL
Akman, Murat; Lewis, John; Vogel, Andrew Failure of Fatou type theorems for solutions to PDE of \(p\)-Laplace type in domains with flat boundaries. (English) Zbl 07548840 Commun. Partial Differ. Equations 47, No. 7, 1457-1503 (2022). MSC: 35J92 35J60 31B15 39B62 35J20 PDF BibTeX XML Cite \textit{M. Akman} et al., Commun. Partial Differ. Equations 47, No. 7, 1457--1503 (2022; Zbl 07548840) Full Text: DOI OpenURL
Vo, V.-N.; Doan, C.-K.; Nguyen, G.-B. A regularity result via fractional maximal operators for \(p\)-Laplace equations in weighted Lorentz spaces. (English) Zbl 07548766 Complex Var. Elliptic Equ. 67, No. 7, 1737-1755 (2022). MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{V. N. Vo} et al., Complex Var. Elliptic Equ. 67, No. 7, 1737--1755 (2022; Zbl 07548766) Full Text: DOI OpenURL
Nabab, D.; Vélin, J. On a nonlinear elliptic system involving the \((p(x),q(x))\)-Laplacian operator with gradient dependence. (English) Zbl 07548757 Complex Var. Elliptic Equ. 67, No. 7, 1554-1578 (2022). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{D. Nabab} and \textit{J. Vélin}, Complex Var. Elliptic Equ. 67, No. 7, 1554--1578 (2022; Zbl 07548757) Full Text: DOI OpenURL
Chu, K. D.; Hai, D. D.; Shivaji, R. A uniqueness result for infinite semipositone \(p\)-Laplacian problems in a ball. (English) Zbl 07548752 Complex Var. Elliptic Equ. 67, No. 6, 1496-1503 (2022). MSC: 34B16 34B18 35J62 PDF BibTeX XML Cite \textit{K. D. Chu} et al., Complex Var. Elliptic Equ. 67, No. 6, 1496--1503 (2022; Zbl 07548752) Full Text: DOI OpenURL
Zhen, Maoding; Yang, Meihua Multiple solutions for a coupled Kirchhoff system with fractional \(p\)-Laplacian and sign-changing weight functions. (English) Zbl 07548743 Complex Var. Elliptic Equ. 67, No. 6, 1326-1351 (2022). MSC: 35A15 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{M. Zhen} and \textit{M. Yang}, Complex Var. Elliptic Equ. 67, No. 6, 1326--1351 (2022; Zbl 07548743) Full Text: DOI OpenURL
Le, Phuong; Rahal, Belgacem On stable and finite Morse index solutions to quasilinear Schrödinger equations. (English) Zbl 07548018 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 46, 19 p. (2022). MSC: 35Jxx 35B53 35J92 35B08 35B35 PDF BibTeX XML Cite \textit{P. Le} and \textit{B. Rahal}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 46, 19 p. (2022; Zbl 07548018) Full Text: DOI OpenURL
Adimurthi, Karthik; Byun, Sun-Sig; Kim, Wontae Partial existence result for homogeneous quasilinear parabolic problems beyond the duality pairing. (English) Zbl 07547955 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 159, 67 p. (2022). MSC: 35K59 35D99 35K61 35K92 PDF BibTeX XML Cite \textit{K. Adimurthi} et al., Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 159, 67 p. (2022; Zbl 07547955) Full Text: DOI OpenURL
Graef, John R.; Heidarkhani, Shapour; Kong, Lingju; Moradi, Shahin Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. (English) Zbl 07547243 Math. Bohem. 147, No. 1, 95-112 (2022). MSC: 26A33 34B15 34K45 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Math. Bohem. 147, No. 1, 95--112 (2022; Zbl 07547243) Full Text: DOI OpenURL
Bachir, Ahmed; Giacomoni, Jacques; Warnault, Guillaume Asymptotic behavior of blowing-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting fluids. (English) Zbl 07547231 Differ. Integral Equ. 35, No. 9-10, 511-530 (2022). MSC: 35J47 35J92 35B40 37C60 PDF BibTeX XML Cite \textit{A. Bachir} et al., Differ. Integral Equ. 35, No. 9--10, 511--530 (2022; Zbl 07547231) OpenURL
Benhamida, Ghania; Moussaoui, Toufik Existence of infinitely many solutions for fractional \(p\)-Laplacian Schrödinger-Kirchhof-type equations with general potentials. (English) Zbl 07545947 Asian-Eur. J. Math. 15, No. 5, Article ID 2250095, 15 p. (2022). MSC: 35R11 35A15 35B38 35J62 35J92 35R09 34A08 PDF BibTeX XML Cite \textit{G. Benhamida} and \textit{T. Moussaoui}, Asian-Eur. J. Math. 15, No. 5, Article ID 2250095, 15 p. (2022; Zbl 07545947) Full Text: DOI OpenURL
Balaadich, Farah; Azroul, Elhoussine Existence results for fractional \(p\)-Laplacian systems via Young measures. (English) Zbl 07545152 Math. Model. Anal. 27, No. 2, 232-241 (2022). MSC: 35J92 35R11 35D30 35A01 PDF BibTeX XML Cite \textit{F. Balaadich} and \textit{E. Azroul}, Math. Model. Anal. 27, No. 2, 232--241 (2022; Zbl 07545152) Full Text: DOI OpenURL
Lu, Heqian; Zhang, Zhengce The Cauchy problem for a parabolic \(p\)-Laplacian equation with combined nonlinearities. (English) Zbl 07545066 J. Math. Anal. Appl. 514, No. 2, Article ID 126329, 40 p. (2022). MSC: 35B44 35B33 35K15 35K92 PDF BibTeX XML Cite \textit{H. Lu} and \textit{Z. Zhang}, J. Math. Anal. Appl. 514, No. 2, Article ID 126329, 40 p. (2022; Zbl 07545066) Full Text: DOI OpenURL
Li, Qifan Partial regularity for degenerate parabolic systems with nonstandard growth and discontinuous coefficients. (English) Zbl 07545055 J. Math. Anal. Appl. 514, No. 2, Article ID 126316, 46 p. (2022). MSC: 35B65 35K40 35K59 35K92 PDF BibTeX XML Cite \textit{Q. Li}, J. Math. Anal. Appl. 514, No. 2, Article ID 126316, 46 p. (2022; Zbl 07545055) Full Text: DOI OpenURL
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Zhang, Jian Ambrosetti-Prodi problems for the Robin \((p, q)\)-Laplacian. (English) Zbl 07544614 Nonlinear Anal., Real World Appl. 67, Article ID 103640, 22 p. (2022). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Nonlinear Anal., Real World Appl. 67, Article ID 103640, 22 p. (2022; Zbl 07544614) Full Text: DOI OpenURL
Zeng, Shengda; Papageorgiou, Nikolaos S. Nodal solutions for anisotropic \((p, q)\)-equations. (English) Zbl 07544587 Nonlinear Anal., Real World Appl. 67, Article ID 103585, 16 p. (2022). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{S. Zeng} and \textit{N. S. Papageorgiou}, Nonlinear Anal., Real World Appl. 67, Article ID 103585, 16 p. (2022; Zbl 07544587) Full Text: DOI OpenURL
Zeng, Shengda; Migórski, Stanisław; Tarzia, Domingo A. A new elliptic mixed boundary value problem with \((p,q)\)-Laplacian and Clarke subdifferential: existence, comparison and convergence results. (English) Zbl 07544536 Anal. Appl., Singap. 20, No. 4, 839-858 (2022). MSC: 35J92 35J25 35A01 35B40 PDF BibTeX XML Cite \textit{S. Zeng} et al., Anal. Appl., Singap. 20, No. 4, 839--858 (2022; Zbl 07544536) Full Text: DOI OpenURL
Aizicovici, Sergiu; Papageorgiou, Nikolaos S.; Staicu, Vasile Infinitely many nodal solutions for anisotropic \((p,q)\)-equations. (English) Zbl 07544303 Pure Appl. Funct. Anal. 7, No. 2, 473-487 (2022). MSC: 35Jxx 35B51 35J60 35J92 PDF BibTeX XML Cite \textit{S. Aizicovici} et al., Pure Appl. Funct. Anal. 7, No. 2, 473--487 (2022; Zbl 07544303) Full Text: Link OpenURL
Buccheri, S.; da Silva, J. V.; de Miranda, L. H. A system of local/nonlocal \(p\)-Laplacians: the eigenvalue problem and its asymptotic limit as \(p\rightarrow \infty\). (English) Zbl 07544271 Asymptotic Anal. 128, No. 2, 149-181 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{S. Buccheri} et al., Asymptotic Anal. 128, No. 2, 149--181 (2022; Zbl 07544271) Full Text: DOI OpenURL
do Ó, João Marcos; Shamarova, Evelina; da Silva, Esteban Singular solutions to \(k\)-Hessian equations with fast-growing nonlinearities. (English) Zbl 07544227 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 113000, 38 p. (2022). MSC: 34B15 34C23 35A24 35J15 35J62 35J92 PDF BibTeX XML Cite \textit{J. M. do Ó} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 113000, 38 p. (2022; Zbl 07544227) Full Text: DOI OpenURL
Björn, Anders Removable singularities for bounded \(\mathcal{A} \)-(super)harmonic and quasi(super)harmonic functions on weighted \(\mathbf{R}^n\). (English) Zbl 07544197 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112907, 16 p. (2022). MSC: 31C45 31E05 35J92 PDF BibTeX XML Cite \textit{A. Björn}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112907, 16 p. (2022; Zbl 07544197) Full Text: DOI OpenURL
Zhang, Shengui Existence of solutions for a nonlocal problem with variable exponent operator. (English) Zbl 07543829 J. Math. Res. Appl. 42, No. 1, 41-56 (2022). MSC: 35D30 35J60 35J70 PDF BibTeX XML Cite \textit{S. Zhang}, J. Math. Res. Appl. 42, No. 1, 41--56 (2022; Zbl 07543829) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Shimi, Mohammed; Srati, Mohammed Multiple solutions for a binonlocal fractional \(p(x,\cdot)\)-Kirchhoff type problem. (English) Zbl 07543123 J. Integral Equations Appl. 34, No. 1, 1-17 (2022). MSC: 35R11 35D30 35J35 35J92 47G20 PDF BibTeX XML Cite \textit{E. Azroul} et al., J. Integral Equations Appl. 34, No. 1, 1--17 (2022; Zbl 07543123) Full Text: DOI OpenURL
Esposito, Francesco; Farina, Alberto; Montoro, Luigi; Sciunzi, Berardino Monotonicity of positive solutions to quasilinear elliptic equations in half-spaces with a changing-sign nonlinearity. (English) Zbl 07542667 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 154, 14 p. (2022). MSC: 35J62 35J92 35B06 35B50 35B51 PDF BibTeX XML Cite \textit{F. Esposito} et al., Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 154, 14 p. (2022; Zbl 07542667) Full Text: DOI OpenURL
Gianazza, Ugo; Liao, Naian A boundary estimate for singular sub-critical parabolic equations. (English) Zbl 07542562 Int. Math. Res. Not. 2022, No. 10, 7332-7353 (2022). MSC: 35B45 35B65 35K20 35K59 35K67 35K92 PDF BibTeX XML Cite \textit{U. Gianazza} and \textit{N. Liao}, Int. Math. Res. Not. 2022, No. 10, 7332--7353 (2022; Zbl 07542562) Full Text: DOI OpenURL
Bonforte, Matteo; Simonov, Nikita; Stan, Diana The Cauchy problem for the fast \(p\)-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour. (English. French summary) Zbl 07541864 J. Math. Pures Appl. (9) 163, 83-131 (2022). MSC: 35B40 35B45 35K15 35K92 35K67 35C06 PDF BibTeX XML Cite \textit{M. Bonforte} et al., J. Math. Pures Appl. (9) 163, 83--131 (2022; Zbl 07541864) Full Text: DOI OpenURL
Aouaoui, Sami On some differential equations involving a new kind of variable exponents. (English) Zbl 07541808 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 23, 18 p. (2022). MSC: 26A24 34A34 47H05 47H10 PDF BibTeX XML Cite \textit{S. Aouaoui}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 23, 18 p. (2022; Zbl 07541808) Full Text: DOI OpenURL
Ege, Ozgur; Ayadi, Souad Existence of solution for a Dirichlet boundary value problem involving the \(p(x)\) Laplacian via a fixed point approach. (English) Zbl 07541755 Miskolc Math. Notes 23, No. 1, 85-92 (2022). MSC: 34B15 34A12 54H25 PDF BibTeX XML Cite \textit{O. Ege} and \textit{S. Ayadi}, Miskolc Math. Notes 23, No. 1, 85--92 (2022; Zbl 07541755) Full Text: DOI OpenURL
Safari, Farzaneh; Razani, Abdolrahman Existence of radial solutions for a weighted \(p\)-biharmonic problem with Navier boundary condition on the Heisenberg group. (English) Zbl 07541636 Math. Slovaca 72, No. 3, 677-692 (2022). MSC: 35R03 35D30 35J35 35J40 35J61 35J91 PDF BibTeX XML Cite \textit{F. Safari} and \textit{A. Razani}, Math. Slovaca 72, No. 3, 677--692 (2022; Zbl 07541636) Full Text: DOI OpenURL
Biagi, Stefano; Mugnai, Dimitri; Vecchi, Eugenio Necessary condition in a Brezis-Oswald-type problem for mixed local and nonlocal operators. (English) Zbl 07540968 Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022). MSC: 35J92 35R11 35J67 35A01 35A02 PDF BibTeX XML Cite \textit{S. Biagi} et al., Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022; Zbl 07540968) Full Text: DOI OpenURL
Benedikt, Jiří; Girg, Petr; Kotrla, Lukáš; Takáč, Peter On the strong comparison principle for degenerate elliptic problems with convection. (English) Zbl 07540685 J. Math. Anal. Appl. 514, No. 1, Article ID 126267, 21 p. (2022). MSC: 35J92 35J70 35J25 35B51 PDF BibTeX XML Cite \textit{J. Benedikt} et al., J. Math. Anal. Appl. 514, No. 1, Article ID 126267, 21 p. (2022; Zbl 07540685) Full Text: DOI OpenURL
Chen, Lijuan; Chen, Caisheng; Yang, Hongwei; Xiu, Zonghu Nonexistence of solutions for quasilinear Schrödinger equation in \(\mathbb{R}^N\). (English) Zbl 07540662 Appl. Anal. 101, No. 9, 3479-3496 (2022). MSC: 35J92 35A02 PDF BibTeX XML Cite \textit{L. Chen} et al., Appl. Anal. 101, No. 9, 3479--3496 (2022; Zbl 07540662) Full Text: DOI OpenURL
Zheng, Yadong; Fang, Zhong Bo Critical curves for a fast diffusive p-Laplacian equation with nonlocal source. (English) Zbl 07540657 Appl. Anal. 101, No. 9, 3389-3409 (2022). MSC: 35K92 35C06 35K61 35K67 35B33 35B40 PDF BibTeX XML Cite \textit{Y. Zheng} and \textit{Z. B. Fang}, Appl. Anal. 101, No. 9, 3389--3409 (2022; Zbl 07540657) Full Text: DOI OpenURL
Liu, Gongwei; Silva, Marcio A. Jorge Attractors and their properties for a class of Kirchhoff models with integro-differential damping. (English) Zbl 07540652 Appl. Anal. 101, No. 9, 3284-3307 (2022). MSC: 35B41 35L77 74H40 PDF BibTeX XML Cite \textit{G. Liu} and \textit{M. A. J. Silva}, Appl. Anal. 101, No. 9, 3284--3307 (2022; Zbl 07540652) Full Text: DOI OpenURL
Qiu, Chong; Yang, Xiaoqi; Zhou, Yuying Solvable optimization problems involving a \(p\)-Laplacian type operator. (English) Zbl 07540650 Appl. Anal. 101, No. 9, 3246-3263 (2022). MSC: 35J92 35J25 35A01 35A02 PDF BibTeX XML Cite \textit{C. Qiu} et al., Appl. Anal. 101, No. 9, 3246--3263 (2022; Zbl 07540650) Full Text: DOI OpenURL
Aberqi, Ahmed; Bennouna, Jaouad; Benslimane, Omar; Ragusa, Maria Alessandra On \(p(z)\)-Laplacian system involving critical nonlinearities. (English) Zbl 07539818 J. Funct. Spaces 2022, Article ID 6685771, 12 p. (2022). MSC: 35J92 35J57 58J05 35A01 35A15 PDF BibTeX XML Cite \textit{A. Aberqi} et al., J. Funct. Spaces 2022, Article ID 6685771, 12 p. (2022; Zbl 07539818) Full Text: DOI OpenURL
Taarabti, Said Positive solutions for the \(p(x)-\)Laplacian : application of the Nehari method. (English) Zbl 07539667 Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 229-243 (2022). MSC: 35J92 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{S. Taarabti}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 229--243 (2022; Zbl 07539667) Full Text: DOI OpenURL
Nakasato, Jean Carlos; Pereira, Marcone Corrêa The \(p\)-Laplacian in thin channels with locally periodic roughness and different scales. (English) Zbl 07536707 Nonlinearity 35, No. 5, 2474-2512 (2022). MSC: 35B27 35B25 35B40 35J25 35J92 PDF BibTeX XML Cite \textit{J. C. Nakasato} and \textit{M. C. Pereira}, Nonlinearity 35, No. 5, 2474--2512 (2022; Zbl 07536707) Full Text: DOI OpenURL
Wang, Biao; Zhang, Zhengce Asymptotic behavior of positive solutions for quasilinear elliptic equations. (English) Zbl 07535520 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 44, 42 p. (2022). MSC: 35J92 35B09 35A01 35C20 PDF BibTeX XML Cite \textit{B. Wang} and \textit{Z. Zhang}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 44, 42 p. (2022; Zbl 07535520) Full Text: DOI OpenURL
Frassu, Silvia; Iannizzotto, Antonio Five solutions for the fractional \(p\)-Laplacian with noncoercive energy. (English) Zbl 07535519 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 43, 27 p. (2022). MSC: 35A15 35J25 35J92 35R11 58E05 PDF BibTeX XML Cite \textit{S. Frassu} and \textit{A. Iannizzotto}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 43, 27 p. (2022; Zbl 07535519) Full Text: DOI OpenURL
Latifi, Mehdi; Alimohammady, Mohsen Eigenvalue problem for perturbated \(p\)-Laplacian. (English) Zbl 07534777 Thai J. Math. 20, No. 1, 35-54 (2022). MSC: 35P30 35J20 35J25 35J92 47H05 PDF BibTeX XML Cite \textit{M. Latifi} and \textit{M. Alimohammady}, Thai J. Math. 20, No. 1, 35--54 (2022; Zbl 07534777) Full Text: Link OpenURL
Skrypnik, Igor I.; Voitovych, Mykhailo V. On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions. (English) Zbl 07534201 Ann. Mat. Pura Appl. (4) 201, No. 3, 1381-1416 (2022). MSC: 35B65 35D30 35K59 35K92 PDF BibTeX XML Cite \textit{I. I. Skrypnik} and \textit{M. V. Voitovych}, Ann. Mat. Pura Appl. (4) 201, No. 3, 1381--1416 (2022; Zbl 07534201) Full Text: DOI OpenURL
Amato, Vincenzo; Gentile, Andrea; Masiello, Alba Lia Comparison results for solutions to \(p\)-Laplace equations with Robin boundary conditions. (English) Zbl 07534193 Ann. Mat. Pura Appl. (4) 201, No. 3, 1189-1212 (2022). MSC: 35J92 35J25 PDF BibTeX XML Cite \textit{V. Amato} et al., Ann. Mat. Pura Appl. (4) 201, No. 3, 1189--1212 (2022; Zbl 07534193) Full Text: DOI OpenURL
Tavani, Mohammad Reza Heidari; Khodabakhshi, Mehdi Existence of three weak solutions for some singular elliptic problems with Hardy potential. (English) Zbl 07532073 J. Math. Ext. 16, No. 4, Paper No. 7, 14 p. (2022). MSC: 35J92 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{M. R. H. Tavani} and \textit{M. Khodabakhshi}, J. Math. Ext. 16, No. 4, Paper No. 7, 14 p. (2022; Zbl 07532073) Full Text: DOI OpenURL
Chuong, Quach Van; Nhan, Le Cong; Truong, Le Xuan Existence and non-existence of global solutions of pseudo-parabolic equations involving \(p(x)\)-Laplacian and logarithmic nonlinearity. (English) Zbl 07531957 J. Elliptic Parabol. Equ. 8, No. 1, 483-512 (2022). MSC: 35K70 35A01 35B40 35B44 35K92 PDF BibTeX XML Cite \textit{Q. Van Chuong} et al., J. Elliptic Parabol. Equ. 8, No. 1, 483--512 (2022; Zbl 07531957) Full Text: DOI OpenURL
Abdellaoui, M. Regularizing effect for some parabolic problems with perturbed terms and irregular data. (English) Zbl 07531955 J. Elliptic Parabol. Equ. 8, No. 1, 443-468 (2022). MSC: 35R06 28A12 32U20 35A01 35B20 35K20 35K92 PDF BibTeX XML Cite \textit{M. Abdellaoui}, J. Elliptic Parabol. Equ. 8, No. 1, 443--468 (2022; Zbl 07531955) Full Text: DOI OpenURL
Abid, Djamel; Akrout, Kamel; Ghanmi, Abdeljabbar Existence results for sub-critical and critical \(p\)-fractional elliptic equations via Nehari manifold method. (English) Zbl 07531949 J. Elliptic Parabol. Equ. 8, No. 1, 293-312 (2022). MSC: 35P30 35J20 35J25 35J62 35J92 35R11 PDF BibTeX XML Cite \textit{D. Abid} et al., J. Elliptic Parabol. Equ. 8, No. 1, 293--312 (2022; Zbl 07531949) Full Text: DOI OpenURL
Souissi, Chouhaïd On the existence of solutions to a fractional \((p, q)\)-Laplacian system on bounded domains. (English) Zbl 07531946 J. Elliptic Parabol. Equ. 8, No. 1, 231-253 (2022). MSC: 35R11 35B38 35J50 35J57 35J62 35J92 47J30 PDF BibTeX XML Cite \textit{C. Souissi}, J. Elliptic Parabol. Equ. 8, No. 1, 231--253 (2022; Zbl 07531946) Full Text: DOI OpenURL
Allalou, Chakir; Hilal, Khalid; Ait Temghart, Said Existence of weak solutions for some local and nonlocal \(p\)-Laplacian problem. (English) Zbl 07531942 J. Elliptic Parabol. Equ. 8, No. 1, 151-169 (2022). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{C. Allalou} et al., J. Elliptic Parabol. Equ. 8, No. 1, 151--169 (2022; Zbl 07531942) Full Text: DOI OpenURL
Papageorgiou, Nikolaos S.; Winkert, Patrick On a class of singular anisotropic \((p, q)\)-equations. (English) Zbl 07531519 Rev. Mat. Complut. 35, No. 2, 545-571 (2022). MSC: 35J92 35J75 35B32 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} and \textit{P. Winkert}, Rev. Mat. Complut. 35, No. 2, 545--571 (2022; Zbl 07531519) Full Text: DOI OpenURL
Fernández Bonder, Julián; Pérez-Llanos, Mayte; Salort, Ariel M. A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians. (English) Zbl 07531516 Rev. Mat. Complut. 35, No. 2, 447-483 (2022). MSC: 35R11 35J25 35J92 45G05 35R09 PDF BibTeX XML Cite \textit{J. Fernández Bonder} et al., Rev. Mat. Complut. 35, No. 2, 447--483 (2022; Zbl 07531516) Full Text: DOI OpenURL
Giraudon, Théo; Miyamoto, Yasuhito Fractional semilinear heat equations with singular and nondecaying initial data. (English) Zbl 07531515 Rev. Mat. Complut. 35, No. 2, 415-445 (2022). MSC: 35R11 35K15 35K58 46E30 PDF BibTeX XML Cite \textit{T. Giraudon} and \textit{Y. Miyamoto}, Rev. Mat. Complut. 35, No. 2, 415--445 (2022; Zbl 07531515) Full Text: DOI OpenURL
El Ouardy, Mounim; El Hadfi, Youssef; Sbai, Abdelaaziz Existence of positive solutions to nonlinear singular parabolic equations with Hardy potential. (English) Zbl 07531500 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 28, 32 p. (2022). MSC: 35K67 35K20 35K59 35K92 35B09 35B45 35B65 35A21 PDF BibTeX XML Cite \textit{M. El Ouardy} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 28, 32 p. (2022; Zbl 07531500) Full Text: DOI OpenURL
Fornaro, S.; Henriques, E.; Vespri, V. Stability to a class of doubly nonlinear very singular parabolic equations. (English) Zbl 07529413 Manuscr. Math. 168, No. 1-2, 165-179 (2022). MSC: 35B45 35B65 35K67 35K59 35K92 PDF BibTeX XML Cite \textit{S. Fornaro} et al., Manuscr. Math. 168, No. 1--2, 165--179 (2022; Zbl 07529413) Full Text: DOI OpenURL
Bal, Kaushik; Garain, Prashanta Weighted and anisotropic Sobolev inequality with extremal. (English) Zbl 07529410 Manuscr. Math. 168, No. 1-2, 101-117 (2022). MSC: 35A23 35J62 35J70 35J75 35J92 PDF BibTeX XML Cite \textit{K. Bal} and \textit{P. Garain}, Manuscr. Math. 168, No. 1--2, 101--117 (2022; Zbl 07529410) Full Text: DOI OpenURL
Aliyev, M. J.; Alkhutov, Yu. A.; Tikhomirov, R. N. Harnack inequality for elliptic \((p, q)\)-Laplacian with partially Muckenhoupt weight. (English. Russian original) Zbl 07528253 J. Math. Sci., New York 262, No. 3, 233-245 (2022); translation from Probl. Mat. Anal. 115, 3-13 (2022). MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{M. J. Aliyev} et al., J. Math. Sci., New York 262, No. 3, 233--245 (2022; Zbl 07528253); translation from Probl. Mat. Anal. 115, 3--13 (2022) Full Text: DOI OpenURL
Durastanti, Riccardo; Oliva, Francescantonio Comparison principle for elliptic equations with mixed singular nonlinearities. (English) Zbl 07528128 Potential Anal. 57, No. 1, 83-100 (2022). MSC: 35J25 35J92 35J75 35A01 35A02 PDF BibTeX XML Cite \textit{R. Durastanti} and \textit{F. Oliva}, Potential Anal. 57, No. 1, 83--100 (2022; Zbl 07528128) Full Text: DOI OpenURL
Nguyen Van Thin Multiplicity and concentration of solutions to a fractional \(p\)-Laplace problem with exponential growth. (English) Zbl 07527817 Ann. Fenn. Math. 47, No. 2, 603-639 (2022). MSC: 35A15 35A23 35J35 35J61 35J92 35R11 35B25 PDF BibTeX XML Cite \textit{Nguyen Van Thin}, Ann. Fenn. Math. 47, No. 2, 603--639 (2022; Zbl 07527817) Full Text: DOI OpenURL
Abdellaoui, Mohammed On the behavior of entropy solutions for a fractional \(p\)-Laplacian problem as \(t\) tends to infinity. (English) Zbl 07527613 Rend. Mat. Appl., VII. Ser. 43, No. 2, 103-132 (2022). MSC: 35B40 35D30 35K20 35K92 35R11 32U20 28A12 PDF BibTeX XML Cite \textit{M. Abdellaoui}, Rend. Mat. Appl., VII. Ser. 43, No. 2, 103--132 (2022; Zbl 07527613) Full Text: Link OpenURL
Naceri, Mokhtar Singular anisotropic elliptic problems with variable exponents. (English) Zbl 07527266 Mem. Differ. Equ. Math. Phys. 85, 119-132 (2022). MSC: 35J75 35J92 35J25 35A01 35B65 PDF BibTeX XML Cite \textit{M. Naceri}, Mem. Differ. Equ. Math. Phys. 85, 119--132 (2022; Zbl 07527266) Full Text: Link OpenURL
Boukhsas, Abdelmajid; Ouhamou, Brahim Steklov eigenvalues problems for generalized \((p,q)\)-Laplacian type operators. (English) Zbl 07527261 Mem. Differ. Equ. Math. Phys. 85, 33-51 (2022). MSC: 35J92 35J66 35P30 35A01 35A15 PDF BibTeX XML Cite \textit{A. Boukhsas} and \textit{B. Ouhamou}, Mem. Differ. Equ. Math. Phys. 85, 33--51 (2022; Zbl 07527261) Full Text: Link OpenURL
Liu, Wulong; Dai, Guowei; Papageorgiou, Nikolaos S.; Winkert, Patrick Existence of solutions for singular double phase problems via the Nehari manifold method. (English) Zbl 07527185 Anal. Math. Phys. 12, No. 3, Paper No. 75, 25 p. (2022). MSC: 35J15 35J62 35J92 35P30 PDF BibTeX XML Cite \textit{W. Liu} et al., Anal. Math. Phys. 12, No. 3, Paper No. 75, 25 p. (2022; Zbl 07527185) Full Text: DOI OpenURL
Lv, Huilin; Zheng, Shenzhou Ground states for Schrödinger-Kirchhoff equations of fractional \(p\)-Laplacian involving logarithmic and critical nonlinearity. (English) Zbl 07526845 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106438, 15 p. (2022). MSC: 35R11 35A15 35J92 35R09 47G20 PDF BibTeX XML Cite \textit{H. Lv} and \textit{S. Zheng}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106438, 15 p. (2022; Zbl 07526845) Full Text: DOI OpenURL
Giga, Yoshikazu; Tsubouchi, Shuntaro Correction to: “Continuity of derivatives of a convex solution to a perturbed one-Laplace equation by \(p\)-Laplacian”. (English) Zbl 07525975 Arch. Ration. Mech. Anal. 244, No. 3, 1373-1374 (2022). MSC: 35B65 35B50 35B53 35J92 PDF BibTeX XML Cite \textit{Y. Giga} and \textit{S. Tsubouchi}, Arch. Ration. Mech. Anal. 244, No. 3, 1373--1374 (2022; Zbl 07525975) Full Text: DOI OpenURL
Cen, Jinxia; Khan, Akhtar A.; Motreanu, Dumitru; Zeng, Shengda Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. (English) Zbl 07525937 Inverse Probl. 38, No. 6, Article ID 065006, 28 p. (2022). MSC: 49N45 49J40 35J40 PDF BibTeX XML Cite \textit{J. Cen} et al., Inverse Probl. 38, No. 6, Article ID 065006, 28 p. (2022; Zbl 07525937) Full Text: DOI OpenURL
El-Houari, H.; Chadli, L. S.; Moussa, H. On a class of Schrödinger system problem in Orlicz-Sobolev spaces. (English) Zbl 07525249 J. Funct. Spaces 2022, Article ID 2486542, 13 p. (2022). MSC: 35J57 35J62 35A01 PDF BibTeX XML Cite \textit{H. El-Houari} et al., J. Funct. Spaces 2022, Article ID 2486542, 13 p. (2022; Zbl 07525249) Full Text: DOI OpenURL
Giacomoni, Jacques; Gouasmia, Abdelhamid; Mokrane, Abdelhafid Discrete Picone inequalities and applications to non local and non homogenenous operators. (English) Zbl 07524917 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 100, 21 p. (2022). MSC: 35J92 35R11 35A01 35A02 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 100, 21 p. (2022; Zbl 07524917) Full Text: DOI OpenURL
Le, Phuong Liouville results for double phase problems in \(\mathbb{R}^N\). (English) Zbl 07524906 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 59, 18 p. (2022). Reviewer: Patrick Winkert (Berlin) MSC: 35B53 35J92 35B08 35B35 PDF BibTeX XML Cite \textit{P. Le}, Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 59, 18 p. (2022; Zbl 07524906) Full Text: DOI OpenURL
Uchida, Shun Solvability of doubly nonlinear parabolic equation with \(p\)-Laplacian. (English) Zbl 07524396 Evol. Equ. Control Theory 11, No. 3, 975-1000 (2022). MSC: 35K92 35K20 35K59 35R70 47J35 34G25 PDF BibTeX XML Cite \textit{S. Uchida}, Evol. Equ. Control Theory 11, No. 3, 975--1000 (2022; Zbl 07524396) Full Text: DOI OpenURL
Liu, Zhenhai; Papageorgiou, Nikolaos S. Nodal solutions for a weighted \((p,q)\)-equation. (English) Zbl 07523736 J. Convex Anal. 29, No. 2, 559-570 (2022). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{N. S. Papageorgiou}, J. Convex Anal. 29, No. 2, 559--570 (2022; Zbl 07523736) Full Text: Link OpenURL
El Hammar, Hasnae; Allalou, Chakir; Abbassi, Adil; Kassidi, Abderrazak The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities. (English. French summary) Zbl 07523612 Cubo 24, No. 1, 63-82 (2022). MSC: 35R11 35A16 35J25 35J92 47H11 PDF BibTeX XML Cite \textit{H. El Hammar} et al., Cubo 24, No. 1, 63--82 (2022; Zbl 07523612) Full Text: DOI Link OpenURL
Ait Hammou, Mustapha Weak solutions for fractional \(p(x,\cdot)\)-Laplacian Dirichlet problems with weight. (English) Zbl 07523600 Analysis, München 42, No. 2, 121-132 (2022). MSC: 35R11 35J25 35J92 35S15 47H11 PDF BibTeX XML Cite \textit{M. Ait Hammou}, Analysis, München 42, No. 2, 121--132 (2022; Zbl 07523600) Full Text: DOI OpenURL
Il’yasov, Yavdat Rayleigh quotients of the level set manifolds related to the nonlinear PDE. (English) Zbl 07523377 Minimax Theory Appl. 7, No. 2, 277-302 (2022). MSC: 35J92 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Il'yasov}, Minimax Theory Appl. 7, No. 2, 277--302 (2022; Zbl 07523377) Full Text: Link OpenURL
Colasuonno, Francesca; Noris, Benedetta; Verzini, Gianmaria Multiplicity of solutions on a Nehari set in an invariant cone. (English) Zbl 07523374 Minimax Theory Appl. 7, No. 2, 185-206 (2022). MSC: 35J92 35J20 PDF BibTeX XML Cite \textit{F. Colasuonno} et al., Minimax Theory Appl. 7, No. 2, 185--206 (2022; Zbl 07523374) Full Text: Link OpenURL
Motreanu, Dumitru Equations with \(s\)-fractional \((p,q)\)-Laplacian and convolution. (English) Zbl 07523124 Minimax Theory Appl. 7, No. 1, 159-172 (2022). MSC: 35S15 35J25 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{D. Motreanu}, Minimax Theory Appl. 7, No. 1, 159--172 (2022; Zbl 07523124) Full Text: Link OpenURL
Kong, Lingju; Nichols, Roger Multiple weak solutions of biharmonic systems. (English) Zbl 07523121 Minimax Theory Appl. 7, No. 1, 109-118 (2022). MSC: 35J57 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{L. Kong} and \textit{R. Nichols}, Minimax Theory Appl. 7, No. 1, 109--118 (2022; Zbl 07523121) Full Text: Link OpenURL
Dai, L. V.; Dung, N. T.; Tuyen, N. D.; Zhao, L. Gradient estimates for weighted \(p\)-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds. (English) Zbl 07522816 Kodai Math. J. 45, No. 1, 19-37 (2022). MSC: 35J92 30L99 58J05 35B53 PDF BibTeX XML Cite \textit{L. V. Dai} et al., Kodai Math. J. 45, No. 1, 19--37 (2022; Zbl 07522816) Full Text: DOI OpenURL
Esposito, Francesco; Farina, Alberto; Montoro, Luigi; Sciunzi, Berardino On the Gibbons’ conjecture for equations involving the \(p\)-Laplacian. (English) Zbl 07522796 Math. Ann. 382, No. 1-2, 943-974 (2022). MSC: 35J62 35J92 35B06 35B50 35B51 PDF BibTeX XML Cite \textit{F. Esposito} et al., Math. Ann. 382, No. 1--2, 943--974 (2022; Zbl 07522796) Full Text: DOI OpenURL
Saifia, Ouarda; Vélin, Jean Existence result for variable exponents elliptic system with lack of compactness. (English) Zbl 07518225 Appl. Anal. 101, No. 6, 2119-2143 (2022). MSC: 35J57 35J92 35A01 PDF BibTeX XML Cite \textit{O. Saifia} and \textit{J. Vélin}, Appl. Anal. 101, No. 6, 2119--2143 (2022; Zbl 07518225) Full Text: DOI OpenURL
Rahmoune, Abita Bounds for below-up time in a nonlinear generalized heat equation. (English) Zbl 07518211 Appl. Anal. 101, No. 6, 1871-1879 (2022). MSC: 35B44 35K20 35K92 PDF BibTeX XML Cite \textit{A. Rahmoune}, Appl. Anal. 101, No. 6, 1871--1879 (2022; Zbl 07518211) Full Text: DOI OpenURL
Arora, Rakesh Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities. (English) Zbl 07517701 Commun. Pure Appl. Anal. 21, No. 6, 2253-2269 (2022). MSC: 35J92 35J25 35A01 47H10 PDF BibTeX XML Cite \textit{R. Arora}, Commun. Pure Appl. Anal. 21, No. 6, 2253--2269 (2022; Zbl 07517701) Full Text: DOI OpenURL
Chen, Yongpeng; Niu, Miaomiao Ground state solutions of nonlinear Schrödinger equations involving the fractional p-Laplacian and potential wells. (English) Zbl 07517539 Open Math. 20, 50-62 (2022). MSC: 35J62 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{M. Niu}, Open Math. 20, 50--62 (2022; Zbl 07517539) Full Text: DOI OpenURL
Papageorgiou, Nikolaos S.; Scapellato, Andrea Positive solutions for anisotropic singular Dirichlet problems. (English) Zbl 07517463 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1141-1168 (2022). Reviewer: Calogero Vetro (Palermo) MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} and \textit{A. Scapellato}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1141--1168 (2022; Zbl 07517463) Full Text: DOI OpenURL
Biswas, Reshmi; Bahrouni, Sabri; Carvalho, Marcos L. Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition. (English) Zbl 07517423 Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022). MSC: 35R11 35A15 35J25 35J92 35S15 47G20 47J30 PDF BibTeX XML Cite \textit{R. Biswas} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022; Zbl 07517423) Full Text: DOI OpenURL
Liao, Naian Local continuity of weak solutions to the Stefan problem involving the singular \(p\)-Laplacian. (English) Zbl 07517188 SIAM J. Math. Anal. 54, No. 2, 2570-2586 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35D30 35K59 35K92 35R35 35R70 80A22 PDF BibTeX XML Cite \textit{N. Liao}, SIAM J. Math. Anal. 54, No. 2, 2570--2586 (2022; Zbl 07517188) Full Text: DOI OpenURL
Balci, Anna Kh.; Diening, Lars; Giova, Raffaella; di Napoli, Antonia Passarelli Elliptic equations with degenerate weights. (English) Zbl 07517185 SIAM J. Math. Anal. 54, No. 2, 2373-2412 (2022). MSC: 35B65 35B45 35J70 35J92 35R05 PDF BibTeX XML Cite \textit{A. Kh. Balci} et al., SIAM J. Math. Anal. 54, No. 2, 2373--2412 (2022; Zbl 07517185) Full Text: DOI OpenURL
Bucur, Claudia; Squassina, Marco An asymptotic expansion for the fractional \(p\)-Laplacian and for gradient-dependent nonlocal operators. (English) Zbl 07517068 Commun. Contemp. Math. 24, No. 4, Article ID 2150021, 34 p. (2022). MSC: 47-XX 35-XX 46E35 28D20 82B10 PDF BibTeX XML Cite \textit{C. Bucur} and \textit{M. Squassina}, Commun. Contemp. Math. 24, No. 4, Article ID 2150021, 34 p. (2022; Zbl 07517068) Full Text: DOI OpenURL
Moll, Salvador; Pallardó, Vicent An augmented Lagrangian model for signal segmentation. (English) Zbl 07516921 Mediterr. J. Math. 19, No. 3, Paper No. 117, 20 p. (2022). MSC: 94A12 94A08 92C55 35G60 35Q68 35J92 PDF BibTeX XML Cite \textit{S. Moll} and \textit{V. Pallardó}, Mediterr. J. Math. 19, No. 3, Paper No. 117, 20 p. (2022; Zbl 07516921) Full Text: DOI OpenURL
Chu, Ying; Cheng, Libo; Sun, Jiahui; Cheng, Yi Existence of multiple solutions for a quasilinear elliptic system involving sign-changing weight functions and variable exponent. (English) Zbl 07516916 Mediterr. J. Math. 19, No. 3, Paper No. 112, 22 p. (2022). MSC: 35J58 35J92 35A01 35J15 PDF BibTeX XML Cite \textit{Y. Chu} et al., Mediterr. J. Math. 19, No. 3, Paper No. 112, 22 p. (2022; Zbl 07516916) Full Text: DOI OpenURL
Hirn, Adrian; Wollner, Winnifried An optimal control problem for equations with p-structure and its finite element discretization. (English) Zbl 07516514 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 137-165 (2022). MSC: 49K20 49M25 65N30 65N12 PDF BibTeX XML Cite \textit{A. Hirn} and \textit{W. Wollner}, Radon Ser. Comput. Appl. Math. 29, 137--165 (2022; Zbl 07516514) Full Text: DOI OpenURL
Ma, Ling-wei; Zhang, Zhen-qiu Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional \(p\)-Laplacians. (English) Zbl 07515501 Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 52-72 (2022). MSC: 35R11 35B06 35A01 PDF BibTeX XML Cite \textit{L.-w. Ma} and \textit{Z.-q. Zhang}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 52--72 (2022; Zbl 07515501) Full Text: DOI OpenURL
Chang, Caihong; Hu, Bei; Zhang, Zhengce Liouville-type theorems and existence of solutions for quasilinear elliptic equations with nonlinear gradient terms. (English) Zbl 07515362 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112873, 29 p. (2022). MSC: 35J92 35B53 35J25 PDF BibTeX XML Cite \textit{C. Chang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112873, 29 p. (2022; Zbl 07515362) Full Text: DOI OpenURL
Brasco, Lorenzo; Prinari, Francesca; Zagati, Anna Chiara A comparison principle for the Lane-Emden equation and applications to geometric estimates. (English) Zbl 07515354 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112847, 41 p. (2022). MSC: 35B51 35J92 49R05 PDF BibTeX XML Cite \textit{L. Brasco} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112847, 41 p. (2022; Zbl 07515354) Full Text: DOI OpenURL
Bezerra Júnior, Elzon C.; da Silva, João Vitor; Ricarte, Gleydson C. Geometric estimates for doubly nonlinear parabolic PDEs. (English) Zbl 07515325 Nonlinearity 35, No. 5, 2334-2362 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35B45 35K59 35K65 35K92 PDF BibTeX XML Cite \textit{E. C. Bezerra Júnior} et al., Nonlinearity 35, No. 5, 2334--2362 (2022; Zbl 07515325) Full Text: DOI OpenURL
Liu, Changjian; Zhang, Meirong On the structure of periodic eigenvalues of the vectorial \(p\)-Laplacian. (English) Zbl 07515322 Nonlinearity 35, No. 5, 2206-2240 (2022). MSC: 37Jxx 70H03 58E05 35B38 70H06 34C14 70G60 PDF BibTeX XML Cite \textit{C. Liu} and \textit{M. Zhang}, Nonlinearity 35, No. 5, 2206--2240 (2022; Zbl 07515322) Full Text: DOI OpenURL
Björn, Anders; Hansevi, Daniel Semiregular and strongly irregular boundary points for \(p\)-harmonic functions on unbounded sets in metric spaces. (English) Zbl 07513926 Collect. Math. 73, No. 2, 253-270 (2022). MSC: 31E05 30L99 35J66 35J92 49Q20 PDF BibTeX XML Cite \textit{A. Björn} and \textit{D. Hansevi}, Collect. Math. 73, No. 2, 253--270 (2022; Zbl 07513926) Full Text: DOI OpenURL
Repovš, Dušan D.; Vetro, Calogero The behavior of solutions of a parametric weighted \((p, q)\)-Laplacian equation. (English) Zbl 1485.35159 AIMS Math. 7, No. 1, 499-517 (2022). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{D. D. Repovš} and \textit{C. Vetro}, AIMS Math. 7, No. 1, 499--517 (2022; Zbl 1485.35159) Full Text: DOI OpenURL