Vallet, Guy; Zimmermann, Aleksandra Well-posedness for nonlinear SPDEs with strongly continuous perturbation. (English) Zbl 07316400 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 265-295 (2021). MSC: 60H15 35K92 35K55 PDF BibTeX XML Cite \textit{G. Vallet} and \textit{A. Zimmermann}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 265--295 (2021; Zbl 07316400) Full Text: DOI
Buccheri, Stefano; Leonori, Tommaso; Rossi, Julio D. Strong convergence of the gradients for \(p\)-Laplacian problems as \(p \rightarrow \infty \). (English) Zbl 07315390 J. Math. Anal. Appl. 495, No. 1, Article ID 124724, 11 p. (2021). MSC: 35 34 PDF BibTeX XML Cite \textit{S. Buccheri} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124724, 11 p. (2021; Zbl 07315390) Full Text: DOI
Wang, Yu-Zhao; Huang, Huimin Eigenvalue estimates of the \(p\)-Laplacian on finite graphs. (English) Zbl 07315185 Differ. Geom. Appl. 74, Article ID 101697, 12 p. (2021). MSC: 05C50 PDF BibTeX XML Cite \textit{Y.-Z. Wang} and \textit{H. Huang}, Differ. Geom. Appl. 74, Article ID 101697, 12 p. (2021; Zbl 07315185) Full Text: DOI
Ma, Li On nonlocal Hénon type problems with the fractional Laplacian. (English) Zbl 07312797 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112190, 10 p. (2021). MSC: 35R11 35A25 35B53 35J92 45K05 46E35 PDF BibTeX XML Cite \textit{L. Ma}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112190, 10 p. (2021; Zbl 07312797) Full Text: DOI
Ayazoglu, Rabil; Saraç, Yeşim; Şener, S. Şule; Alisoy, Gülizar Existence and multiplicity of solutions for a Schrödinger-Kirchhoff type equation involving the fractional \(p(.,.)\)-Laplacian operator in \(\mathbb{R}^N\). (English) Zbl 07311755 Collect. Math. 72, No. 1, 129-156 (2021). MSC: 35R11 35J60 35J20 35B09 PDF BibTeX XML Cite \textit{R. Ayazoglu} et al., Collect. Math. 72, No. 1, 129--156 (2021; Zbl 07311755) Full Text: DOI
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Pak, SunAe A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. (English) Zbl 07310777 Appl. Numer. Math. 160, 313-330 (2021). MSC: 65L PDF BibTeX XML Cite \textit{K. Jong} et al., Appl. Numer. Math. 160, 313--330 (2021; Zbl 07310777) Full Text: DOI
Méndez, Osvaldo On the eigenvalue problem for a class of Kirchhoff-type equations. (English) Zbl 07310684 J. Math. Anal. Appl. 494, No. 2, Article ID 124671, 15 p. (2021). MSC: 35J PDF BibTeX XML Cite \textit{O. Méndez}, J. Math. Anal. Appl. 494, No. 2, Article ID 124671, 15 p. (2021; Zbl 07310684) Full Text: DOI
Iwabuchi, Tsukasa; Matsuyama, Tokio; Taniguchi, Koichi Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian. (English) Zbl 07310661 J. Math. Anal. Appl. 494, No. 2, Article ID 124640, 29 p. (2021). MSC: 46E35 35J25 35B65 30H25 PDF BibTeX XML Cite \textit{T. Iwabuchi} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124640, 29 p. (2021; Zbl 07310661) Full Text: DOI
Tsubouchi, Shuntaro Local Lipschitz bounds for solutions to certain singular elliptic equations involving the one-Laplacian. (English) Zbl 07309177 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 33, 35 p. (2021). MSC: 35B65 35A15 35J92 PDF BibTeX XML Cite \textit{S. Tsubouchi}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 33, 35 p. (2021; Zbl 07309177) Full Text: DOI
Buccheri, Stefano; Leonori, Tommaso Large solutions to quasilinear problems involving the \(p\)-Laplacian as \(p\) diverges. (English) Zbl 07309174 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 30, 23 p. (2021). MSC: 35J25 35J92 PDF BibTeX XML Cite \textit{S. Buccheri} and \textit{T. Leonori}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 30, 23 p. (2021; Zbl 07309174) Full Text: DOI
Byun, Sun-Sig; Park, Jung-Tae; Shin, Pilsoo Global regularity for degenerate/singular parabolic equations involving measure data. (English) Zbl 07309162 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 18, 32 p. (2021). MSC: 35K92 35R06 35B65 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 18, 32 p. (2021; Zbl 07309162) Full Text: DOI
Ding, Hang; Zhou, Jun Comments on “Blow-up and decay for a class of pseudo-parabolic \(p\)-Laplacian equation with logarithmic nonlinearity”. (English) Zbl 07308033 Comput. Math. Appl. 84, 144-147 (2021). MSC: 35 31 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Comput. Math. Appl. 84, 144--147 (2021; Zbl 07308033) Full Text: DOI
Bocea, Marian; Mihăilescu, Mihai On the monotonicity of the principal frequency of the \(p\)-Laplacian. (English) Zbl 07306555 Adv. Calc. Var. 14, No. 1, 147-152 (2021). MSC: 35P30 35J92 47J10 35B10 PDF BibTeX XML Cite \textit{M. Bocea} and \textit{M. Mihăilescu}, Adv. Calc. Var. 14, No. 1, 147--152 (2021; Zbl 07306555) Full Text: DOI
Cârstea, Cătălin I.; Kar, Manas Recovery of coefficients for a weighted \(p\)-Laplacian perturbed by a linear second order term. (English) Zbl 07305938 Inverse Probl. 37, No. 1, Article ID 015013, 22 p. (2021). MSC: 35 34 PDF BibTeX XML Cite \textit{C. I. Cârstea} and \textit{M. Kar}, Inverse Probl. 37, No. 1, Article ID 015013, 22 p. (2021; Zbl 07305938) Full Text: DOI
Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional \(p(x)\)-Kirchhoff type problems. (English) Zbl 07305251 Appl. Anal. 100, No. 2, 383-402 (2021). MSC: 35R11 35D30 35J92 35J25 35R09 35P30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Appl. Anal. 100, No. 2, 383--402 (2021; Zbl 07305251) Full Text: DOI
Tuan, Nguyen Huy; Khoa, Vo Anh; Van, Phan Thi Khanh; Au, Vo Van An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. (English) Zbl 07305070 J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021). MSC: 62L20 62F10 65J05 65J20 35K92 60H35 60H40 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021; Zbl 07305070) Full Text: DOI
Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari The Liouville theorem for \(p\)-harmonic functions and quasiminimizers with finite energy. (English) Zbl 07303595 Math. Z. 297, No. 1-2, 827-854 (2021). MSC: 35B53 30L15 31E05 31C45 35J20 35J92 46E36 49Q20 30D40 PDF BibTeX XML Cite \textit{A. Björn} et al., Math. Z. 297, No. 1--2, 827--854 (2021; Zbl 07303595) Full Text: DOI
Ciani, Simone; Figueiredo, Giovany M.; Suárez, Antonio Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method. (English) Zbl 07302511 Arch. Math. 116, No. 1, 85-95 (2021). MSC: 35J92 35K65 35B65 35B45 35K20 PDF BibTeX XML Cite \textit{S. Ciani} et al., Arch. Math. 116, No. 1, 85--95 (2021; Zbl 07302511) Full Text: DOI
Mavinga, N.; Pardo, R. Equivalence between uniform \(L^{p^*}\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical \(p\)-Laplacian equations. (English) Zbl 07302076 Mediterr. J. Math. 18, No. 1, Paper No. 13, 24 p. (2021). MSC: 35J92 35B45 35B33 35J92 35J60 PDF BibTeX XML Cite \textit{N. Mavinga} and \textit{R. Pardo}, Mediterr. J. Math. 18, No. 1, Paper No. 13, 24 p. (2021; Zbl 07302076) Full Text: DOI
Cuesta, Mabel; Leadi, Liamidi Positive and sign-changing solutions for a quasilinear Steklov nonlinear boundary problem with critical growth. (English) Zbl 07301271 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021). MSC: 35B09 35D30 35J66 35J92 35J70 35J25 35J20 PDF BibTeX XML Cite \textit{M. Cuesta} and \textit{L. Leadi}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021; Zbl 07301271) Full Text: DOI
Au, Vo Van; Jafari, Hossein; Hammouch, Zakia; Tuan, Nguyen Huy On a final value problem for a nonlinear fractional pseudo-parabolic equation. (English) Zbl 07300779 Electron Res. Arch. 29, No. 1, 1709-1734 (2021). MSC: 35K70 35K92 35R11 35R25 47A52 47J06 PDF BibTeX XML Cite \textit{V. Van Au} et al., Electron Res. Arch. 29, No. 1, 1709--1734 (2021; Zbl 07300779) Full Text: DOI
Alves, Claudianor O.; Boudjeriou, Tahir Existence of solution for a class of heat equation involving the \(p(x)\) Laplacian with triple regime. (English) Zbl 07298439 Z. Angew. Math. Phys. 72, No. 1, Paper No. 2, 18 p. (2021). MSC: 35K92 35K20 35K59 65M60 35B44 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{T. Boudjeriou}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 2, 18 p. (2021; Zbl 07298439) Full Text: DOI
Van Thin, Nguyen; Xiang, Mingqi; Zhang, Binlin On critical Schrödinger-Kirchhoff-type problems involving the fractional \(p\)-Laplacian with potential vanishing at infinity. (English) Zbl 07297203 Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021). MSC: 35R11 35J92 35A15 35J60 PDF BibTeX XML Cite \textit{N. Van Thin} et al., Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021; Zbl 07297203) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Wang, Wenbo; Li, Quanqing; Zhou, Jianwen; Li, Yongkun Normalized solutions for p-Laplacian equations with a \(L^2\)-supercritical growth. (English) Zbl 07296609 Ann. Funct. Anal. 12, No. 1, Paper No. 9, 19 p. (2021). MSC: 35J92 35A01 35J20 PDF BibTeX XML Cite \textit{W. Wang} et al., Ann. Funct. Anal. 12, No. 1, Paper No. 9, 19 p. (2021; Zbl 07296609) Full Text: DOI
Baldelli, Laura; Brizi, Ylenia; Filippucci, Roberta Multiplicity results for \((p, q)\)-Laplacian equations with critical exponent in \(\mathbb{R}^N\) and negative energy. (English) Zbl 07296600 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 8, 30 p. (2021). MSC: 35J92 35A01 35J20 PDF BibTeX XML Cite \textit{L. Baldelli} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 8, 30 p. (2021; Zbl 07296600) Full Text: DOI
Gasiński, Leszek; Winkert, Patrick Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. (English) Zbl 07289124 J. Differ. Equations 274, 1037-1066 (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J15 35J62 35J92 35P30 PDF BibTeX XML Cite \textit{L. Gasiński} and \textit{P. Winkert}, J. Differ. Equations 274, 1037--1066 (2021; Zbl 07289124) Full Text: DOI
Hynd, Ryan; Lindgren, Erik Large time behavior of solutions of Trudinger’s equation. (English) Zbl 07289102 J. Differ. Equations 274, 188-230 (2021). MSC: 35B40 35K92 35K59 35K65 35K15 PDF BibTeX XML Cite \textit{R. Hynd} and \textit{E. Lindgren}, J. Differ. Equations 274, 188--230 (2021; Zbl 07289102) Full Text: DOI
Arrieta, José M.; Nakasato, Jean Carlos; Pereira, Marcone Corrêa The \(p\)-Laplacian equation in thin domains: the unfolding approach. (English) Zbl 07289098 J. Differ. Equations 274, 1-34 (2021). MSC: 35B27 35B25 35B40 35J92 35J25 PDF BibTeX XML Cite \textit{J. M. Arrieta} et al., J. Differ. Equations 274, 1--34 (2021; Zbl 07289098) Full Text: DOI
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D. Robin double-phase problems with singular and superlinear terms. (English) Zbl 07284909 Nonlinear Anal., Real World Appl. 58, Article ID 103217, 20 p. (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J92 35J25 35B32 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Nonlinear Anal., Real World Appl. 58, Article ID 103217, 20 p. (2021; Zbl 07284909) Full Text: DOI
Mugnai, Dimitri; Proietti Lippi, Edoardo Linking over cones for the Neumann fractional \(p\)-Laplacian. (English) Zbl 07283599 J. Differ. Equations 271, 797-820 (2021). MSC: 35R11 35J92 35J25 35A15 47J30 35S15 47G10 45G05 35P30 PDF BibTeX XML Cite \textit{D. Mugnai} and \textit{E. Proietti Lippi}, J. Differ. Equations 271, 797--820 (2021; Zbl 07283599) Full Text: DOI
Do, Tan Duc; Trong, Nguyen Ngoc; Truong, Le Xuan Weighted gradient estimates for the class of very singular \(p\)-Laplace system. (English) Zbl 07283584 J. Differ. Equations 271, 301-331 (2021). MSC: 35J47 35J92 PDF BibTeX XML Cite \textit{T. D. Do} et al., J. Differ. Equations 271, 301--331 (2021; Zbl 07283584) Full Text: DOI
Itakura, Kenta; Onitsuka, Masakazu; Tanaka, Satoshi Perturbations of planar quasilinear differential systems. (English) Zbl 07283581 J. Differ. Equations 271, 216-253 (2021). Reviewer: Olusola Akinyele (Bowie) MSC: 34D05 34D10 35J92 PDF BibTeX XML Cite \textit{K. Itakura} et al., J. Differ. Equations 271, 216--253 (2021; Zbl 07283581) Full Text: DOI
Vildanova, V. F.; Mukminov, F. Kh. Existence of weak solutions of the aggregation equation with the \(p ( \cdot )\)-Laplacian. (English. Russian original) Zbl 1453.35109 J. Math. Sci., New York 252, No. 2, 156-167 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34-45 (2018). MSC: 35K20 35K92 35K65 35K61 35D30 35R09 PDF BibTeX XML Cite \textit{V. F. Vildanova} and \textit{F. Kh. Mukminov}, J. Math. Sci., New York 252, No. 2, 156--167 (2021; Zbl 1453.35109); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34--45 (2018) Full Text: DOI
Nguyen, Thanh-Nhan; Tran, Minh-Phuong Level-set inequalities on fractional maximal distribution functions and applications to regularity theory. (English) Zbl 07270901 J. Funct. Anal. 280, No. 1, Article ID 108797, 47 p. (2021). Reviewer: Dian K. Palagachev (Bari) MSC: 35B45 35B65 35J62 35J92 35K55 PDF BibTeX XML Cite \textit{T.-N. Nguyen} and \textit{M.-P. Tran}, J. Funct. Anal. 280, No. 1, Article ID 108797, 47 p. (2021; Zbl 07270901) Full Text: DOI
Ciraolo, Giulio; Corso, Rosario; Roncoroni, Alberto Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions. (English) Zbl 07270896 J. Funct. Anal. 280, No. 1, Article ID 108787, 27 p. (2021). Reviewer: Marius Ghergu (Dublin) MSC: 35J92 35B53 35B09 35B33 PDF BibTeX XML Cite \textit{G. Ciraolo} et al., J. Funct. Anal. 280, No. 1, Article ID 108787, 27 p. (2021; Zbl 07270896) Full Text: DOI
Liu, Zhao Maximum principles and monotonicity of solutions for fractional \(p\)-equations in unbounded domains. (English) Zbl 1451.35038 J. Differ. Equations 270, 1043-1078 (2021). MSC: 35B50 35R11 35J25 35J92 35B06 35B65 PDF BibTeX XML Cite \textit{Z. Liu}, J. Differ. Equations 270, 1043--1078 (2021; Zbl 1451.35038) Full Text: DOI
Cavaterra, Cecilia; Dipierro, Serena; Farina, Alberto; Gao, Zu; Valdinoci, Enrico Pointwise gradient bounds for entire solutions of elliptic equations with non-standard growth conditions and general nonlinearities. (English) Zbl 07269180 J. Differ. Equations 270, 435-475 (2021). Reviewer: Sergey G. Pyatkov (Khanty-Mansiysk) MSC: 35J60 35J70 35J75 PDF BibTeX XML Cite \textit{C. Cavaterra} et al., J. Differ. Equations 270, 435--475 (2021; Zbl 07269180) Full Text: DOI
Byun, Sun-Sig; Shin, Pilsoo; Youn, Yeonghun Fractional differentiability results for nonlinear measure data problems with coefficients in \(C_\gamma^\alpha\). (English) Zbl 07269179 J. Differ. Equations 270, 390-434 (2021). Reviewer: Vladimir Vasilyev (Belgorod) MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., J. Differ. Equations 270, 390--434 (2021; Zbl 07269179) Full Text: DOI
Arora, Rakesh; Shmarev, Sergey Strong solutions of evolution equations with \(p(x,t)\)-Laplacian: existence, global higher integrability of the gradients and second-order regularity. (English) Zbl 1450.35153 J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021). MSC: 35K92 35D35 35K65 35K67 35B65 PDF BibTeX XML Cite \textit{R. Arora} and \textit{S. Shmarev}, J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021; Zbl 1450.35153) Full Text: DOI
Feng, Zhaosheng; Tan, Cheng; Wei, Lei Uniqueness and asymptotic behavior of positive solution of quasilinear elliptic equations with Hardy potential. (English) Zbl 07265462 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112152, 24 p. (2021). MSC: 35J62 35B09 35B40 35A02 PDF BibTeX XML Cite \textit{Z. Feng} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112152, 24 p. (2021; Zbl 07265462) Full Text: DOI
Björn, Jana; Mwasa, Abubakar Mixed boundary value problem for \(p\)-harmonic functions in an infinite cylinder. (English) Zbl 07265453 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112134, 30 p. (2021). MSC: 35J92 35J25 31B15 35B40 35B65 PDF BibTeX XML Cite \textit{J. Björn} and \textit{A. Mwasa}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112134, 30 p. (2021; Zbl 07265453) Full Text: DOI
Shen, Yansheng Existence of solutions to elliptic problems with fractional p-Laplacian and multiple critical nonlinearities in the entire space \(\mathbb{R}^N\). (English) Zbl 07265446 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112102, 17 p. (2021). MSC: 35J62 35R11 35A01 PDF BibTeX XML Cite \textit{Y. Shen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112102, 17 p. (2021; Zbl 07265446) Full Text: DOI
Sun, Xizheng; Liu, Bingchen A complete classification of initial energy in a \(p ( x )\)-Laplace pseudo-parabolic equation. (English) Zbl 1450.35151 Appl. Math. Lett. 111, Article ID 106664, 7 p. (2021). MSC: 35K70 35B44 35K20 35K92 PDF BibTeX XML Cite \textit{X. Sun} and \textit{B. Liu}, Appl. Math. Lett. 111, Article ID 106664, 7 p. (2021; Zbl 1450.35151) Full Text: DOI
Ho, Ky; Sim, Inbo An existence result for \(( p , q )\)-Laplace equations involving sandwich-type and critical growth. (English) Zbl 1445.35183 Appl. Math. Lett. 111, Article ID 106646, 8 p. (2021). MSC: 35J92 35J20 35J25 PDF BibTeX XML Cite \textit{K. Ho} and \textit{I. Sim}, Appl. Math. Lett. 111, Article ID 106646, 8 p. (2021; Zbl 1445.35183) Full Text: DOI
Zhen, Maoding; Zhang, Binlin A different approach to ground state solutions for \(p\)-Laplacian system with critical exponent. (English) Zbl 07258381 Appl. Math. Lett. 111, Article ID 106593, 8 p. (2021). MSC: 35J47 35J92 PDF BibTeX XML Cite \textit{M. Zhen} and \textit{B. Zhang}, Appl. Math. Lett. 111, Article ID 106593, 8 p. (2021; Zbl 07258381) Full Text: DOI
Wang, Jialin; Zhu, Maochun; Gao, Shujin; Liao, Dongni Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: the sub-quadratic structure case. (English) Zbl 1447.35125 Adv. Nonlinear Anal. 10, 420-449 (2021). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35H20 35B65 32A37 35R03 PDF BibTeX XML Cite \textit{J. Wang} et al., Adv. Nonlinear Anal. 10, 420--449 (2021; Zbl 1447.35125) Full Text: DOI
Liu, Zhenhai; Papageorgiou, Nikolaos S. Positive solutions for resonant (p,q)-equations with convection. (English) Zbl 1448.35266 Adv. Nonlinear Anal. 10, 217-232 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J92 35J25 35B09 35A01 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{N. S. Papageorgiou}, Adv. Nonlinear Anal. 10, 217--232 (2021; Zbl 1448.35266) Full Text: DOI
Li, Dongping; Chen, Fangqi; An, Yukun Positive solutions for a \(p\)-Laplacian type system of impulsive fractional boundary value problem. (English) Zbl 07315120 J. Appl. Anal. Comput. 10, No. 2, 740-759 (2020). MSC: 34A08 34B18 34B37 58E50 PDF BibTeX XML Cite \textit{D. Li} et al., J. Appl. Anal. Comput. 10, No. 2, 740--759 (2020; Zbl 07315120) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of \(p\)-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. (English) Zbl 07312461 Stochastic Processes Appl. 130, No. 12, 7431-7462 (2020). MSC: 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Stochastic Processes Appl. 130, No. 12, 7431--7462 (2020; Zbl 07312461) Full Text: DOI
Candito, Pasquale; Guarnotta, Umberto; Perera, Kanishka Two solutions for a parametric singular \(p\)-Laplacian problem. (English) Zbl 07312302 J. Nonlinear Var. Anal. 4, No. 3, 455-568 (2020). MSC: 47 46 PDF BibTeX XML Cite \textit{P. Candito} et al., J. Nonlinear Var. Anal. 4, No. 3, 455--568 (2020; Zbl 07312302) Full Text: DOI
Kozhevnikova, Larisa M. Renormalized solutions of elliptic equations with variable exponents and general measure data. (English. Russian original) Zbl 07308585 Sb. Math. 211, No. 12, 1737-1776 (2020); translation from Mat. Sb. 211, No. 12, 83-122 (2020). MSC: 35J62 35J92 PDF BibTeX XML Cite \textit{L. M. Kozhevnikova}, Sb. Math. 211, No. 12, 1737--1776 (2020; Zbl 07308585); translation from Mat. Sb. 211, No. 12, 83--122 (2020) Full Text: DOI
Seto, Shoo The first nonzero eigenvalue of the p-Laplacian on differential forms. (English) Zbl 07307886 Pac. J. Math. 309, No. 1, 213-222 (2020). MSC: 47J10 53C65 PDF BibTeX XML Cite \textit{S. Seto}, Pac. J. Math. 309, No. 1, 213--222 (2020; Zbl 07307886) Full Text: DOI
Bazighifan, O.; Grace, S. R.; Alzabut, J.; Özbekler, A. New results for oscillatory properties of neutral differential equations with a \(p\)-Laplacian like operator. (English) Zbl 07307827 Miskolc Math. Notes 21, No. 2, 631-640 (2020). MSC: 34C10 34K11 PDF BibTeX XML Cite \textit{O. Bazighifan} et al., Miskolc Math. Notes 21, No. 2, 631--640 (2020; Zbl 07307827) Full Text: DOI
Kon’kov, A. A. Geometric estimates of solutions of quasilinear elliptic inequalities. (English. Russian original) Zbl 07304906 Izv. Math. 84, No. 6, 1056-1104 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 6, 23-72 (2020). MSC: 35J15 35J60 35J61 35J62 35J92 PDF BibTeX XML Cite \textit{A. A. Kon'kov}, Izv. Math. 84, No. 6, 1056--1104 (2020; Zbl 07304906); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 6, 23--72 (2020) Full Text: DOI
Chaouai, Zakariya; El Hachimi, Abderrahmane Qualitative properties of weak solutions for \(p\)-Laplacian equations with nonlocal source and gradient absorption. (English) Zbl 07303804 Bull. Korean Math. Soc. 57, No. 4, 1003-1031 (2020). MSC: 35K92 35K20 35B09 35B51 35B44 PDF BibTeX XML Cite \textit{Z. Chaouai} and \textit{A. El Hachimi}, Bull. Korean Math. Soc. 57, No. 4, 1003--1031 (2020; Zbl 07303804) Full Text: DOI
Fujimoto, K. Power comparison theorems for oscillation problems for second order differential equations with \(p(t)\)-Laplacian. (English) Zbl 07301177 Acta Math. Hung. 162, No. 1, 333-344 (2020). MSC: 34C10 34C15 PDF BibTeX XML Cite \textit{K. Fujimoto}, Acta Math. Hung. 162, No. 1, 333--344 (2020; Zbl 07301177) Full Text: DOI
Zhang, Yichen; Feng, Meiqiang A coupled \(p\)-Laplacian elliptic system: existence, uniqueness and asymptotic behavior. (English) Zbl 07300750 Electron Res. Arch. 28, No. 4, 1419-1438 (2020). MSC: 35J60 35J66 35J92 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{M. Feng}, Electron Res. Arch. 28, No. 4, 1419--1438 (2020; Zbl 07300750) Full Text: DOI
Bieske, Thomas On the Lie algebra of polarizable Carnot groups. (English) Zbl 07299657 Anal. Math. Phys. 10, No. 4, Paper No. 80, 10 p. (2020). MSC: 53C17 35A08 31C45 35H20 22E25 43A80 22E60 PDF BibTeX XML Cite \textit{T. Bieske}, Anal. Math. Phys. 10, No. 4, Paper No. 80, 10 p. (2020; Zbl 07299657) Full Text: DOI
Gol’dshtein, Vladimir; Hurri-Syrjänen, Ritva; Pchelintsev, Valerii; Ukhlov, Alexander Space quasiconformal composition operators with applications to Neumann eigenvalues. (English) Zbl 07299655 Anal. Math. Phys. 10, No. 4, Paper No. 78, 19 p. (2020). MSC: 35P15 35P30 35J92 46E35 30C65 PDF BibTeX XML Cite \textit{V. Gol'dshtein} et al., Anal. Math. Phys. 10, No. 4, Paper No. 78, 19 p. (2020; Zbl 07299655) Full Text: DOI
Cabanillas Lapa, Eugenio Global solutions for fractional viscoelastic equations with logarithmic nonlinearities. (English) Zbl 07298205 Electron. J. Differ. Equ. 2020, Paper No. 125, 15 p. (2020). MSC: 35J30 35J92 47H05 47H30 PDF BibTeX XML Cite \textit{E. Cabanillas Lapa}, Electron. J. Differ. Equ. 2020, Paper No. 125, 15 p. (2020; Zbl 07298205) Full Text: Link
Vetro, Calogero Perturbed eigenvalue problems for the Robin \(p\)-Laplacian plus an indefinite potential. (English) Zbl 07296650 Anal. Math. Phys. 10, No. 4, Paper No. 69, 33 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J92 35J25 35A01 35A02 PDF BibTeX XML Cite \textit{C. Vetro}, Anal. Math. Phys. 10, No. 4, Paper No. 69, 33 p. (2020; Zbl 07296650) Full Text: DOI
Giri, Ratan Kr.; Pinchover, Yehuda Positive Liouville theorem and asymptotic behaviour for \((p,A)\)-Laplacian type elliptic equations with Fuchsian potentials in Morrey space. (English) Zbl 07296648 Anal. Math. Phys. 10, No. 4, Paper No. 67, 33 p. (2020). MSC: 35B53 35B09 35J62 35J92 35B40 PDF BibTeX XML Cite \textit{R. Kr. Giri} and \textit{Y. Pinchover}, Anal. Math. Phys. 10, No. 4, Paper No. 67, 33 p. (2020; Zbl 07296648) Full Text: DOI
Wang, Hexiang Nonexistence of positive solutions for a four point boundary value problem with \(p\)-Laplacian operators. (Chinese. English summary) Zbl 07296006 Math. Pract. Theory 50, No. 10, 225-230 (2020). MSC: 34B18 34B10 34A08 PDF BibTeX XML Cite \textit{H. Wang}, Math. Pract. Theory 50, No. 10, 225--230 (2020; Zbl 07296006)
Han, Tao; Wang, Li; Jian, Hui Positive solutions for a fractional \(p\)-Laplacian Kirchhoff problem with vanishing nonlocal term. (Chinese. English summary) Zbl 07296005 Math. Pract. Theory 50, No. 10, 217-224 (2020). MSC: 35B09 35R11 PDF BibTeX XML Cite \textit{T. Han} et al., Math. Pract. Theory 50, No. 10, 217--224 (2020; Zbl 07296005)
Liu, Bingchen; Zhang, Changcheng; Wang, Lu A \(m, p\)-Laplacian parabolic equation with nonlinear absorption and boundary flux. (English) Zbl 07295973 Math. Appl. 33, No. 3, 598-606 (2020). MSC: 35K55 35K65 35B44 PDF BibTeX XML Cite \textit{B. Liu} et al., Math. Appl. 33, No. 3, 598--606 (2020; Zbl 07295973)
Wu, Xiulan; Li, Wanting; Fu, Jun Blow-up of solutions for \(p\)-Laplace equation with positive initial energy. (Chinese. English summary) Zbl 07295906 J. Wuhan Univ., Nat. Sci. Ed. 66, No. 3, 233-236 (2020). MSC: 35B44 35J92 35K92 PDF BibTeX XML Cite \textit{X. Wu} et al., J. Wuhan Univ., Nat. Sci. Ed. 66, No. 3, 233--236 (2020; Zbl 07295906) Full Text: DOI
Pei, Ruichang Multiple solutions for a fractional \(p\)-Laplacian equation with concave nonlinearities. (English) Zbl 07295601 J. Partial Differ. Equations 33, No. 2, 93-108 (2020). MSC: 35J60 35R11 35A15 PDF BibTeX XML Cite \textit{R. Pei}, J. Partial Differ. Equations 33, No. 2, 93--108 (2020; Zbl 07295601) Full Text: DOI
Liu, Yongjian; Liu, Zhenhai; Motreanu, Dumitru Differential inclusion problems with convolution and discontinuous nonlinearities. (English) Zbl 07293862 Evol. Equ. Control Theory 9, No. 4, 1057-1071 (2020). MSC: 35J92 35J87 49J52 PDF BibTeX XML Cite \textit{Y. Liu} et al., Evol. Equ. Control Theory 9, No. 4, 1057--1071 (2020; Zbl 07293862) Full Text: DOI
Abdellaoui, M. Stability/nonstability properties of renormalized/entropy solutions for degenerate parabolic equations with \(L^1\)/measure data. (English) Zbl 07293762 S\(\vec{\text{e}}\)MA J. 77, No. 4, 457-506 (2020). MSC: 35K92 35K20 35B35 35D30 35K65 35A20 28A12 PDF BibTeX XML Cite \textit{M. Abdellaoui}, S\(\vec{\text{e}}\)MA J. 77, No. 4, 457--506 (2020; Zbl 07293762) Full Text: DOI
Bazighifan, Omar Oscillatory applications of some fourth-order differential equations. (English) Zbl 07292733 Math. Methods Appl. Sci. 43, No. 17, 10276-10286 (2020). MSC: 34K11 PDF BibTeX XML Cite \textit{O. Bazighifan}, Math. Methods Appl. Sci. 43, No. 17, 10276--10286 (2020; Zbl 07292733) Full Text: DOI
Nyamoradi, Nemat; Kirane, Mokhtar Existence of solutions of fractional \(p\)-Laplacian systems with different critical Sobolev-Hardy exponents. (English) Zbl 07292730 Math. Methods Appl. Sci. 43, No. 17, 10237-10248 (2020). MSC: 35R11 35J92 35J57 35J20 PDF BibTeX XML Cite \textit{N. Nyamoradi} and \textit{M. Kirane}, Math. Methods Appl. Sci. 43, No. 17, 10237--10248 (2020; Zbl 07292730) Full Text: DOI
Bae, Jung-Hyun; Kim, Jae-Myoung Infinitely many solutions for polyharmonic equations of \(p(x)\)-Laplace type. (English) Zbl 07292708 Math. Methods Appl. Sci. 43, No. 17, 9814-9828 (2020). MSC: 35J92 35A01 35A15 58E05 PDF BibTeX XML Cite \textit{J.-H. Bae} and \textit{J.-M. Kim}, Math. Methods Appl. Sci. 43, No. 17, 9814--9828 (2020; Zbl 07292708) Full Text: DOI
Ayazoglu (Mashiyev), Rabil; Akbulut, Sezgin; Akkoyunlu, Ebubekir Existence of multiple solutions of Schrödinger-Kirchhoff-type equations involving the \(p(.)\)-Laplacian in \(\mathbb{R}^N\). (English) Zbl 07292693 Math. Methods Appl. Sci. 43, No. 17, 9598-9614 (2020). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{R. Ayazoglu (Mashiyev)} et al., Math. Methods Appl. Sci. 43, No. 17, 9598--9614 (2020; Zbl 07292693) Full Text: DOI
Heidarkhani, Shapour; Gharehgazlouei, Fariba; Imbesi, Maurizio Existence and multiplicity of homoclinic solutions for a difference equation. (English) Zbl 07288632 Electron. J. Differ. Equ. 2020, Paper No. 115, 12 p. (2020). MSC: 39A10 39A12 47J30 35B38 PDF BibTeX XML Cite \textit{S. Heidarkhani} et al., Electron. J. Differ. Equ. 2020, Paper No. 115, 12 p. (2020; Zbl 07288632) Full Text: Link
Bahrouni, Anouar; Rădulescu, Vicenţiu D.; Winkert, Patrick Robin fractional problems with symmetric variable growth. (English) Zbl 07287254 J. Math. Phys. 61, No. 10, 101503, 14 p. (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J60 35R11 35J67 35A01 PDF BibTeX XML Cite \textit{A. Bahrouni} et al., J. Math. Phys. 61, No. 10, 101503, 14 p. (2020; Zbl 07287254) Full Text: DOI
Liao, Menglan A class of nonlinear parabolic equations with anisotropic nonstandard growth conditions. (English) Zbl 07287182 J. Math. Phys. 61, No. 8, 081503, 21 p. (2020). MSC: 35K92 35K20 35B40 PDF BibTeX XML Cite \textit{M. Liao}, J. Math. Phys. 61, No. 8, 081503, 21 p. (2020; Zbl 07287182) Full Text: DOI
Ziebell, J. S.; Schütz, L.; Guidolin, P. L. Some fundamental a priori estimates for weak solutions of the evolution p-Laplacian equation. (English) Zbl 07286888 Appl. Anal. 99, No. 16, 2793-2806 (2020). MSC: 35B45 35K92 35K15 PDF BibTeX XML Cite \textit{J. S. Ziebell} et al., Appl. Anal. 99, No. 16, 2793--2806 (2020; Zbl 07286888) Full Text: DOI
Motreanu, Dumitru; Vetro, Calogero; Vetro, Francesca The effects of convolution and gradient dependence on a parametric Dirichlet problem. (English) Zbl 07286423 SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 3, 15 p. (2020). MSC: 35J92 35J47 35J25 PDF BibTeX XML Cite \textit{D. Motreanu} et al., SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 3, 15 p. (2020; Zbl 07286423) Full Text: DOI
Brasco, Lorenzo On principal frequencies and isoperimetric ratios in convex sets. (English. French summary) Zbl 07283627 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 977-1005 (2020). MSC: 35P15 49J40 35J70 35J25 PDF BibTeX XML Cite \textit{L. Brasco}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 977--1005 (2020; Zbl 07283627) Full Text: DOI
Ciani, Simone; Vespri, Vincenzo A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations. (English) Zbl 07283048 Rend. Mat. Appl., VII. Ser. 41, No. 3-4, 251-264 (2020). MSC: 35B65 35K92 35K67 35K65 PDF BibTeX XML Cite \textit{S. Ciani} and \textit{V. Vespri}, Rend. Mat. Appl., VII. Ser. 41, No. 3--4, 251--264 (2020; Zbl 07283048) Full Text: Link
Taarabti, S.; El Allali, Z.; Haddouch, K. Ben On the \(p(X)\)-Kirchhoff-type equation involving the \(p(X)\)-biharmonic operator via the genus theory. (English) Zbl 07282470 Ukr. Math. J. 72, No. 6, 978-989 (2020) and Ukr. Mat. Zh. 72, No. 6, 842-851 (2020). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{S. Taarabti} et al., Ukr. Math. J. 72, No. 6, 978--989 (2020; Zbl 07282470) Full Text: DOI
Ren, Jing; Zhai, Chengbo Solvability for \(p\)-Laplacian generalized fractional coupled systems with two-sided memory effects. (English) Zbl 07279021 Math. Methods Appl. Sci. 43, No. 15, 8797-8822 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{J. Ren} and \textit{C. Zhai}, Math. Methods Appl. Sci. 43, No. 15, 8797--8822 (2020; Zbl 07279021) Full Text: DOI
Zhang, Qiangheng; Li, Yangrong Double stabilities of pullback random attractors for stochastic delayed \(p\)-Laplacian equations. (English) Zbl 1453.35033 Math. Methods Appl. Sci. 43, No. 15, 8406-8433 (2020). MSC: 35B41 35R60 35R10 37L55 60H15 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{Y. Li}, Math. Methods Appl. Sci. 43, No. 15, 8406--8433 (2020; Zbl 1453.35033) Full Text: DOI
Le, Phuong; Le, Kim Anh T.; Dinh, Phuoc Vinh A nonexistence result for anisotropic problems. (English) Zbl 07278336 Nonlinearity 33, No. 12, 7040-7053 (2020). MSC: 35J92 35J25 35B53 35A01 PDF BibTeX XML Cite \textit{P. Le} et al., Nonlinearity 33, No. 12, 7040--7053 (2020; Zbl 07278336) Full Text: DOI
Mohammed, Ahmed; Vitolo, Antonio On the strong maximum principle. (English) Zbl 07275420 Complex Var. Elliptic Equ. 65, No. 8, 1299-1314 (2020). MSC: 35J60 35J70 35B09 35B50 PDF BibTeX XML Cite \textit{A. Mohammed} and \textit{A. Vitolo}, Complex Var. Elliptic Equ. 65, No. 8, 1299--1314 (2020; Zbl 07275420) Full Text: DOI
Bianchi, Davide; Pigola, Stefano; Setti, Alberto G. Qualitative properties of bounded subsolutions of nonlinear PDEs. (English. French summary) Zbl 07275214 J. Math. Pures Appl. (9) 144, 137-163 (2020). MSC: 58J05 31C12 35B45 35B51 53C21 35B09 35B65 PDF BibTeX XML Cite \textit{D. Bianchi} et al., J. Math. Pures Appl. (9) 144, 137--163 (2020; Zbl 07275214) Full Text: DOI
Zhang, Yajie; Ma, Feiyao; Wo, Weifeng Monotonicity and symmetry of solutions to fractional \(p\)-Laplacian equations. (English) Zbl 1452.35247 Rocky Mt. J. Math. 50, No. 5, 1883-1892 (2020). MSC: 35R11 35B06 35B09 35J92 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Rocky Mt. J. Math. 50, No. 5, 1883--1892 (2020; Zbl 1452.35247) Full Text: DOI Euclid
Abbassi, A.; Allalou, C.; Kassidi, A. Existence of weak solutions for nonlinear \(p\)-elliptic problem by topological degree. (English) Zbl 07274327 Nonlinear Dyn. Syst. Theory 20, No. 3, 229-241 (2020). MSC: 35J92 35A01 46E35 PDF BibTeX XML Cite \textit{A. Abbassi} et al., Nonlinear Dyn. Syst. Theory 20, No. 3, 229--241 (2020; Zbl 07274327) Full Text: Link
Chehabi, Hamza; Chakrone, Omar; Chehabi, Mohammed Higher order spectrum and quasi-linear boundary problems of discrete \(p\)-Laplacian. (English) Zbl 1453.39016 J. Difference Equ. Appl. 26, No. 6, 802-817 (2020). MSC: 39A70 39A27 39A12 PDF BibTeX XML Cite \textit{H. Chehabi} et al., J. Difference Equ. Appl. 26, No. 6, 802--817 (2020; Zbl 1453.39016) Full Text: DOI
Rajasekar, M.; Celine Kavida, A.; Anto Bennet, M. A pattern analysis based underwater video segmentation system for target object detection. (English) Zbl 07273294 Multidimensional Syst. Signal Process. 31, No. 4, 1579-1602 (2020). MSC: 94 PDF BibTeX XML Cite \textit{M. Rajasekar} et al., Multidimensional Syst. Signal Process. 31, No. 4, 1579--1602 (2020; Zbl 07273294) Full Text: DOI
Bendikov, Alexander; Cygan, Wojciech Poisson approximation related to spectra of hierarchical Laplacians. (English) Zbl 07272815 Stoch. Dyn. 20, No. 5, Article ID 2050035, 17 p. (2020). MSC: 47 47S10 05C05 60F05 60J25 81Q10 PDF BibTeX XML Cite \textit{A. Bendikov} and \textit{W. Cygan}, Stoch. Dyn. 20, No. 5, Article ID 2050035, 17 p. (2020; Zbl 07272815) Full Text: DOI
Colucci, R.; Franca, M. Ordering properties of radial ground states and singular ground states of quasilinear elliptic equations. (English) Zbl 07272229 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 54, 35 p. (2020). MSC: 35J62 35J92 35B09 PDF BibTeX XML Cite \textit{R. Colucci} and \textit{M. Franca}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 54, 35 p. (2020; Zbl 07272229) Full Text: DOI
Hu, Bingzhong; Yang, Yang A note on the combination between local and nonlocal \(p\)-Laplacian operators. (English) Zbl 07272128 Complex Var. Elliptic Equ. 65, No. 10, 1763-1776 (2020). MSC: 35J92 35B32 35A01 PDF BibTeX XML Cite \textit{B. Hu} and \textit{Y. Yang}, Complex Var. Elliptic Equ. 65, No. 10, 1763--1776 (2020; Zbl 07272128) Full Text: DOI
D’aguì, G.; Sciammetta, A.; Tornatore, E. Two nontrivial solutions for Robin problems driven by a p-Laplacian operator. (English) Zbl 07272002 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 195-206 (2020). MSC: 35J92 35J25 35J20 PDF BibTeX XML Cite \textit{G. D'aguì} et al., in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 195--206 (2020; Zbl 07272002) Full Text: DOI
Galakhov, Evgeny; Salieva, Olga Nonexistence of sign-changing solutions for some elliptic and parabolic inequalities. (English) Zbl 07271541 Math. Methods Appl. Sci. 43, No. 11, 6801-6811 (2020). MSC: 35J62 35K92 35A01 PDF BibTeX XML Cite \textit{E. Galakhov} and \textit{O. Salieva}, Math. Methods Appl. Sci. 43, No. 11, 6801--6811 (2020; Zbl 07271541) Full Text: DOI
Lin, Zhensheng; Chen, Jianqing; Tang, Xiuli Existence of the non-radially symmetric ground state for p-Laplacian equations involving Choquard type. (English) Zbl 07271507 Math. Methods Appl. Sci. 43, No. 10, 6200-6222 (2020). MSC: 35J62 35J20 PDF BibTeX XML Cite \textit{Z. Lin} et al., Math. Methods Appl. Sci. 43, No. 10, 6200--6222 (2020; Zbl 07271507) Full Text: DOI
Ding, Mengyao; Zhang, Chao; Zhou, Shulin Global boundedness and Hölder regularity of solutions to general \(p(x,t)\)-Laplace parabolic equations. (English) Zbl 07271483 Math. Methods Appl. Sci. 43, No. 9, 5809-5831 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K92 35B65 PDF BibTeX XML Cite \textit{M. Ding} et al., Math. Methods Appl. Sci. 43, No. 9, 5809--5831 (2020; Zbl 07271483) Full Text: DOI
Kamache, Fares; Guefaifia, Rafik; Boulaaras, Salah Existence of three solutions for perturbed nonlinear fractional \(p\)-Laplacian boundary value systems with two control parameters. (English) Zbl 07270937 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1781-1803 (2020). MSC: 35J60 35J92 35A15 PDF BibTeX XML Cite \textit{F. Kamache} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1781--1803 (2020; Zbl 07270937) Full Text: DOI
Boudjeriou, Tahir On the diffusion \(p(x)\)-Laplacian with logarithmic nonlinearity. (English) Zbl 1451.35081 J. Elliptic Parabol. Equ. 6, No. 2, 773-794 (2020). MSC: 35K92 35K58 35K20 35B44 PDF BibTeX XML Cite \textit{T. Boudjeriou}, J. Elliptic Parabol. Equ. 6, No. 2, 773--794 (2020; Zbl 1451.35081) Full Text: DOI