×

A framework for computing zeta functions of groups, algebras, and modules. (English) Zbl 1423.11164

Böckle, Gebhard (ed.) et al., Algorithmic and experimental methods in algebra, geometry, and number theory. Cham: Springer. 561-586 (2017).
Summary: We give an overview of the author’s recent work on methods for explicitly computing various types of zeta functions associated with algebraic counting problems. Among the types of zeta functions that we consider are the so-called topological ones.
For the entire collection see [Zbl 1394.14002].

MSC:

11M41 Other Dirichlet series and zeta functions
20F69 Asymptotic properties of groups
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Aluffi, Characteristic classes of singular varieties, in \(Topics in Cohomological Studies of Algebraic Varieties\) (Birkhauser, Basel, 2005), pp. 1-32
[2] N. Avni, B. Klopsch, U. Onn, C. Voll, Representation zeta functions of compact \(p\)-adic analytic groups and arithmetic groups. Duke Math. J. 162(1), 111-197 (2013) · Zbl 1281.22005
[3] V. Baldoni, N. Berline, J.A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne, J. Wu, \(A User’s Guide for LattE Integrale v1.7.3\) (2015). Software package. LattE is available at http://www.math.ucdavis.edu/ latte/
[4] A. Barvinok, \(Integer Points in Polyhedra\). Zurich Lectures in Advanced Mathematics (European Mathematical Society, Zürich, 2008) · Zbl 1154.52009
[5] A. Barvinok, K. Woods, Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16(4), 957-979 (2003) (electronic) · Zbl 1017.05008
[6] D.N. Bernstein, A.G. Kushnirenko, A.G. Khovanskii, Newton polyhedra (Russian). Usp. Mat. Nauk 31(3(189)), 201-202 (1976) · Zbl 0354.14001
[7] E. Bierstone, P.D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207-302 (1997) · Zbl 0896.14006 · doi:10.1007/s002220050141
[8] W. Bruns, B. Ichim, T. Römer, C. Söger, \(Normaliz 3.1.2. Algorithms for Rational Cones and Affine Monoids\) (2016). Available from http://www.math.uos.de/normaliz/
[9] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, \(Singular 4-1-0—A Computer Algebra System for Polynomial Computations\) (2016). Available from http://www.singular.uni-kl.de/
[10] M. Demazure, P. Gabriel, \(Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs\). Avec un appendice ıt Corps de classes local par Michiel Hazewinkel (Masson & Cie/North-Holland Publishing Co., Éditeur Paris/Amsterdam, 1970) · Zbl 0203.23401
[11] J. Denef, Report on Igusa’s local zeta function. Séminaire Bourbaki, vol. 1990/1991. Astérisque 201-203 (1991). Exp. No. 741, 359-386 (1992) · Zbl 0749.11054
[12] J. Denef, K. Hoornaert, Newton polyhedra and Igusa’s local zeta function. J. Number Theory 89(1), 31-64 (2001) · Zbl 0994.11038 · doi:10.1006/jnth.2000.2606
[13] J. Denef, F. Loeser, Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques. J. Am. Math. Soc. 5(4), 705-720 (1992) · Zbl 0777.32017
[14] M.P.F. du Sautoy, The zeta function of \(\(\mathfrak {sl}_2(\mathbb {Z})\)\). Forum Math. 12(2), 197-221 (2000)
[15] M.P.F. du Sautoy, Zeta functions of groups: the quest for order versus the flight from ennui, in \(Groups St. Andrews 2001 in Oxford\), vol. I (Cambridge University Press, Cambridge, 2003), pp. 150-189 · Zbl 1195.11123
[16] M.P.F. du Sautoy, F.J. Grunewald, Analytic properties of zeta functions and subgroup growth. Ann. Math. (2) 152(3), 793-833 (2000) · Zbl 1006.11051
[17] M.P.F. du Sautoy, F. Loeser, Motivic zeta functions of infinite-dimensional Lie algebras. Sel. Math. N. Ser. 10(2), 253-303 (2004) · Zbl 1062.14029 · doi:10.1007/s00029-004-0361-y
[18] M.P.F. du Sautoy, G. Taylor, The zeta function of \(\(\mathfrak {sl}_2\)\) and resolution of singularities. Math. Proc. Camb. Philos. Soc. 132(1), 57-73 (2002) · Zbl 1020.11074
[19] M.P.F. du Sautoy, L. Woodward, \(Zeta Functions of Groups and Rings\). Lecture Notes in Mathematics, vol. 1925 (Springer, Berlin, 2008) · Zbl 1151.11005
[20] D.H. Dung, C. Voll, Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Trans. Am. Math. Soc. 369(9), 6327-6349 (2017) · Zbl 1475.20059
[21] A. Evseev, Reduced zeta functions of Lie algebras. J. Reine Angew. Math. 633, 197-211 (2009) · Zbl 1248.11063
[22] S. Ezzat, Representation growth of finitely generated torsion-free nilpotent groups: methods and examples, Ph.D. thesis, 2012. See http://hdl.handle.net/10092/7235
[23] F.J. Grunewald, D. Segal, G.C. Smith, Subgroups of finite index in nilpotent groups. Invent. Math. 93(1), 185-223 (1988) · Zbl 0651.20040
[24] E. Hrushovski, B. Martin, S. Rideau, R. Cluckers, Definable equivalence relations and zeta functions of groups. J. Eur. Math. Soc. (2017, to appear). arXiv:math/0701011
[25] I. Ilani, Zeta functions related to the group \(\(\text {SL}_2(\mathbb {Z}_p)\)\). Isr. J. Math. 109, 157-172 (1999) · Zbl 0996.11055 · doi:10.1007/BF02775033
[26] A. Jaikin-Zapirain, Zeta function of representations of compact \(p\)-adic analytic groups. J. Am. Math. Soc. 19(1), 91-118 (2006) (electronic) · Zbl 1092.20023
[27] A.G. Khovanskii, Newton polyhedra, and toroidal varieties. Funkcional. Anal. i Priložen 11(4), 56-64, 96 (1977)
[28] A.G. Khovanskii, Newton polyhedra, and the genus of complete intersections. Funktsional. Anal. i Prilozhen 12(1), 51-61 (1978) · Zbl 0406.14035 · doi:10.1007/BF01077562
[29] B. Klopsch, Representation growth and representation zeta functions of groups. Note Mat. 33(1), 107-120 (2013) · Zbl 1279.22028
[30] B. Klopsch, C. Voll, Zeta functions of three-dimensional \(p\)-adic Lie algebras. Math. Z. 263(1), 195-210 (2009) · Zbl 1193.11083 · doi:10.1007/s00209-008-0416-4
[31] A.G. Kushnirenko, Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1-31 (1976) · Zbl 0328.32007
[32] M. Larsen, A. Lubotzky, Representation growth of linear groups. J. Eur. Math. Soc. 10(2), 351-390 (2008) · Zbl 1142.22006
[33] S. Lee, C. Voll, Enumerating graded ideals in graded rings associated to free nilpotent Lie rings (2016). Preprint. arXiv:1606.04515 · Zbl 1408.17008
[34] M.W. Liebeck, Probabilistic and asymptotic aspects of finite simple groups, in \(Probabilistic Group Theory Combinatorics, and Computing\) (Springer, London, 2013), pp. 1-34 · Zbl 1288.20103
[35] A. Lubotzky, A.R. Magid, Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), xi+ 117 (1985) · Zbl 0598.14042 · doi:10.1090/memo/0336
[36] J. Nicaise, An introduction to \(p\)-adic and motivic zeta functions and the monodromy conjecture, in \(Algebraic and Analytic Aspects of Zeta Functions and\)\(L-Functions\) (World Scientific, Singapore, 2010), pp. 141-166 · Zbl 1275.11147
[37] J. Pas, Uniform \(p\)-adic cell decomposition and local zeta functions. J. Reine Angew. Math. 399, 137-172 (1989) · Zbl 0666.12014
[38] T. Rossmann, Computing topological zeta functions of groups, algebras, and modules, I. Proc. Lond. Math. Soc. (3) 110(5), 1099-1134 (2015) · Zbl 1338.11082
[39] T. Rossmann, Computing topological zeta functions of groups, algebras, and modules, II. J. Algebra 444, 567-605 (2015) · Zbl 1329.14053
[40] T. Rossmann, Topological representation zeta functions of unipotent groups. J. Algebra 448, 210-237 (2016) · Zbl 1409.11074 · doi:10.1016/j.jalgebra.2015.09.050
[41] T. Rossmann, Computing local zeta functions of groups, algebras, and modules. Trans. Am. Math. Soc. (2017).  https://doi.org/10.1090/tran/7361 · Zbl 1440.11175 · doi:10.1090/tran/7361
[42] T. Rossmann, Enumerating submodules invariant under an endomorphism. Math. Ann. 368(1-2), 391-417 (2017) · Zbl 1461.11121 · doi:10.1007/s00208-016-1499-6
[43] T. Rossmann, Stability results for local zeta functions of groups algebras, and modules. Math. Proc. Camb. Philos. Soc. 1-10 (2017). https://doi.org/10.1017/S0305004117000585 · doi:10.1017/S0305004117000585
[44] T. Rossmann, Zeta, \(Version 0.3.2\) (2017). See http://www.math.uni-bielefeld.de/ rossmann/Zeta/
[45] J.-P. Serre, \(Lectures on N\)_{\(X\)}(\(p\)). Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton, FL, 2012)
[46] A. Shalev, Applications of some zeta functions in group theory, in \(Zeta Functions in Algebra and Geometry\) (American Mathematical Society, Providence, RI, 2012), pp. 331-344 · Zbl 1260.20022
[47] R. Snocken, Zeta functions of groups and rings, Ph.D. thesis, 2012. See http://eprints.soton.ac.uk/id/eprint/372833
[48] L. Solomon, Zeta functions and integral representation theory. Adv. Math. 26(3), 306-326 (1977) · Zbl 0374.20007 · doi:10.1016/0001-8708(77)90044-5
[49] A. Stasinski, C. Voll, Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B. Am. J. Math. 136(2), 501-550 (2014) · Zbl 1286.11140 · doi:10.1353/ajm.2014.0010
[50] A. Stasinski, C. Voll, Representation zeta functions of some nilpotent groups associated to prehomogeneous vector spaces. Forum Math. 29(3), 717-734 (2017) · Zbl 1366.22009
[51] W.A. Stein et al., \(Sage Mathematics Software (Version 7.4)\). The Sage Development Team (2016). Available from http://www.sagemath.org/
[52] A.N. Varchenko, Zeta-function of monodromy and Newton’s diagram. Invent. Math. 37(3), 253-262 (1976) · Zbl 0333.14007 · doi:10.1007/BF01390323
[53] W. Veys, W.A. Zúñiga-Galindo, Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra. Trans. Am. Math. Soc. 360(4), 2205-2227 (2008) · Zbl 1222.11141 · doi:10.1090/S0002-9947-07-04422-4
[54] O. Villamayor, Constructiveness of Hironaka’s resolution. Ann. Sci. Éc. Norm. Supér. (4) 22(1), 1-32 (1989) · Zbl 0675.14003 · doi:10.24033/asens.1573
[55] C. Voll, Functional equations for zeta functions of groups and rings. Ann. Math. (2) 172(2), 1181-1218 (2010) · Zbl 1314.11057 · doi:10.4007/annals.2010.172.1185
[56] C. Voll, A newcomer’s guide to zeta functions of groups and rings, in \(Lectures on Profinite Topics in Group Theory\) (Cambridge University Press, Cambridge, 2011), pp. 99-144
[57] C. Voll, Zeta functions of groups and rings—recent developments, in \(Groups St Andrews 2013\) (University of St Andrews, St Andrews, 2015), pp. 469-492 · Zbl 1377.11103
[58] C. Voll, Local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms. Int. Math. Res. Not. (2017).  https://doi.org/10.1093/imrn/rnx186 · doi:10.1093/imrn/rnx186
[59] E. Witten, On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153-209 (1991) · Zbl 0762.53063 · doi:10.1007/BF02100009
[60] L. Woodward, Zeta functions of groups: computer calculations and functional equations, Ph.D. thesis,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.