×

Stable generalized finite element method (SGFEM). (English) Zbl 1239.74093

Summary: The Generalized Finite Element Method (GFEM) is a Partition of Unity Method (PUM), where the trial space of standard Finite Element Method (FEM) is augmented with non-polynomial shape functions with compact support. These shape functions, which are also known as the enrichments, mimic the local behavior of the unknown solution of the underlying variational problem. GFEM has been successfully used to solve a variety of problems with complicated features and microstructure. However, the stiffness matrix of GFEM is badly conditioned (much worse compared to the standard FEM) and there could be a severe loss of accuracy in the computed solution of the associated linear system. In this paper, we address this issue and propose a modification of the GFEM, referred to as the Stable GFEM (SGFEM). We show that SGFEM retains the excellent convergence properties of GFEM, does not require a ramp-function in the presence of blending elements, and the conditioning of the associated stiffness matrix is not worse than that of the standard FEM. Moreover, SGFEM is very robust with respect to the parameters of the enrichments. We show these features of SGFEM on several examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] American Society of Mechanical Engineers, New York. ASME guide for Verification and Validation in Computational Solid Mechanics, 2006. V&V 10.; American Society of Mechanical Engineers, New York. ASME guide for Verification and Validation in Computational Solid Mechanics, 2006. V&V 10.
[2] P.R. Amestoy, I.S. Duff, J. Koster, J.Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIMAX 23 (2001) 15-41.; P.R. Amestoy, I.S. Duff, J. Koster, J.Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIMAX 23 (2001) 15-41. · Zbl 0992.65018
[3] I. Babuśka, R. Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Technical Report 10-12, ICES, University of Texas at Austin, 2010.; I. Babuśka, R. Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Technical Report 10-12, ICES, University of Texas at Austin, 2010.
[4] Babuška, I.; Banerjee, U.; Osborn, J., Generalized finite element methods: Main ideas, results, and perspective, Int. J. Comput. Methods, 1, 1, 1-37 (2004)
[5] Babuška, I.; Caloz, G.; Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 945-981 (1994) · Zbl 0807.65114
[6] Babuška, I.; Melenk, J. M., The partition of unity finite element method, Int. J. Numer. Meth. Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[7] Babuška, I.; Oden, J. T., Verification and Validation in computational engineering and science: basic concepts, Comput. Methods Appl. Mech. Engrg., 193, 4057-4066 (2004) · Zbl 1198.74126
[8] Bauer, F. L., Optimal scaling of matrices and the importance of the minimal condition, (Popplewell, C. M., Information Processing 62 IFIP Congress 1962 (1963), North-Holland: North-Holland Amsterdam), 198-201 · Zbl 0135.37501
[9] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[10] Benzley, S. E., Representation of singularities with isoparametric finite elements, Int. J. Numer. Meth. Engrg., 8, 537-545 (1974) · Zbl 0282.65087
[11] Blum, H.; Dobrowoski, M., On finite element methods for elliptic equations on domains with corners, Computing, 28, 53-63 (1982) · Zbl 0465.65059
[12] Byskov, E., The calculation of stress intensity factors using finite element with cracked element, Int. J. Fract. Mech., 6, 159-167 (1970)
[13] Daux, C.; Moes, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with extended finite element method, Int. J. Numer. Meth. Engrg., 48, 1741-1760 (2000) · Zbl 0989.74066
[14] J. Demmel. On floating point error in cholesky. Technical Report CS-89-87, Dept. of Computer Science, Univ. of Tennessee, 1989.; J. Demmel. On floating point error in cholesky. Technical Report CS-89-87, Dept. of Computer Science, Univ. of Tennessee, 1989.
[15] Dolbow, J.; Moës, N.; Belytschko, T., Modeling fracture in Mindlin-Reissner plates with the extended finite element method, J. Solids Struct., 37, 7161-7183 (2000) · Zbl 0993.74061
[16] J.E. Dolbow, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. Ph.D. Thesis, Northwestern University, 1999.; J.E. Dolbow, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. Ph.D. Thesis, Northwestern University, 1999.
[17] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[18] Duarte, C. A.; Oden, J. T., H-p Clouds - An h-\(p\) Meshless Method, Numer. Methods Partial Differ. Equat., 12, 673-705 (1996) · Zbl 0869.65069
[19] Esser, P.; Grande, J.; Reusken, A., An extended finite element method applied to levitated droplet problems, Int. J. Numer. Meth. Engrg, 84, 757-773 (2010) · Zbl 1202.76092
[20] Farsad, M.; Vernerey, F. J.; Park, H. S., An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials, Int. J. Numer. Meth. Engrg, 84, 1466-1489 (2010) · Zbl 1202.74168
[21] Fix, G.; Gulati, S.; Wakoff, G. I., On the use of singular functions with finite element approximations, J. Comp. Phys., 13, 209-228 (1973) · Zbl 0273.35004
[22] Fries, T.-P., A corrected XFEM approximation without problems in blending elements, Int. J. Numer. Meth. Engrg., 75, 503-532 (2008) · Zbl 1195.74173
[23] Fries, T-P; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Meth. Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[24] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore, USA · Zbl 0865.65009
[25] Griebel, M.; Schweitzer, M. A., A Particle-Partition of Unity method - Part VI: Adaptivity, (Griebel, M.; Schweitzer, M. A., Meshfree Methods for Partial Differential Equations III. Meshfree Methods for Partial Differential Equations III, Lecture Notes on Computer Science and Engineering, Vol. 26 (2006), Springer), 121-148
[26] Higham, N. J., Accuracy and Stability of Numerical Algorithms (2002), SIAM: SIAM Philadelphia · Zbl 1011.65010
[27] Kincaid, D.; Cheney, W., Numerical Analysis; Mathematics of Scientific Computing (2002), American Mathematical Society
[28] Kleindorfer, G. B.; O’Neill, L.; Ganeshan, R., Validation in similation: various positions in the philosophy of science, Management Science, 44, 1087-1099 (1998) · Zbl 1103.90377
[29] Li, X. S.; Demmel, J. W., SuperLU-DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans, Mathematical Software, 29, 110-140 (2003) · Zbl 1068.90591
[30] Lu, C.; Shanker, B., Generalized finite element method for vector electromafnetic problems, IEEE Transactions on Antennas and Propagation, 55, 1369-1381 (2007) · Zbl 1369.78686
[31] Matache, A. M.; Babuśka, I.; Schwab, C., Generalized \(p\)-FEM in homogenization, Numer. Math., 86 (2000) · Zbl 0964.65125
[32] J.M. Melenk, On Generalized Finite Element Methods, Ph.D. Thesis, University of Maryland, 1995.; J.M. Melenk, On Generalized Finite Element Methods, Ph.D. Thesis, University of Maryland, 1995.
[33] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basic theory and application, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[34] Menk, A.; Bordas, S. P.A., A robust preconditioning technique for the extended finite element method, Int. J. Meth. Engrg., 85, 1609-1632 (2011) · Zbl 1217.74128
[35] Moes, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 3163-3177 (2003) · Zbl 1054.74056
[36] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack without remeshing, Int. J. Numer. Meth. Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[37] Nouy, A.; Clément, A., eXtended stochastic finite element method for the numerical simulation of heterogegeous materials with random material interfaces, Int. J. Numer. Meth. Engng, 83, 1312-1344 (2010) · Zbl 1202.74182
[38] Oberkampf, W. L.; Roy, Ch. J., Verification and Validation in Scientific Computing (2010), Cambridge University Press: Cambridge University Press New York · Zbl 1211.68499
[39] J.T. Oden, C.A.M. Duarte. Clouds, Cracks and FEMs, in: B. Daya Reddy (Ed.), Recent Developments in Computational and Applied Mechanics, 1997.; J.T. Oden, C.A.M. Duarte. Clouds, Cracks and FEMs, in: B. Daya Reddy (Ed.), Recent Developments in Computational and Applied Mechanics, 1997. · Zbl 0976.74071
[40] Oden, J. T.; Duarte, C. A.M.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Engrg., 153, 117-126 (1998) · Zbl 0956.74062
[41] O’Hara, P.; Duarte, C. A.; Eason, T., Generalized finite element analysis for three-dimensional problems exhibiting sharp thermal gradients, Comput. Methods Appl. Mech. Engrg., 198, 1857-1871 (2009) · Zbl 1227.80050
[42] Rao, A. K.; Raju, I. S.; Murthy, A. V.K., A powerful hybrid method in finite element analysis, Int. J. Numer. Meth. Engrg., 3, 389-403 (1971) · Zbl 0261.65078
[43] Roache, P. J., Fundamentals of Verification and Validation (2009), Hermosa Publisher: Hermosa Publisher Albuquerque, NM
[44] Schweitzer, M. A., A parallel multilevel partition of unity method for elliptic partial differential equations, Lecture Notes in Computational Science, vol. 29 (2003), Springer · Zbl 1016.65099
[45] Simone, A.; Duarte, C. A.; Van der Giessen, E., A generalized finite element method for polycrystals with discontinuous grain boundaries, Int. J. Numer. Meth. Engrg., 67, 1122-1145 (2006) · Zbl 1113.74076
[46] Simulation Interoperability Standards Organization, Orlando, FL, Guide for generic methodology for Verificatin and Validation (V&V) and acceptance of models, simulations, and data, 2007.; Simulation Interoperability Standards Organization, Orlando, FL, Guide for generic methodology for Verificatin and Validation (V&V) and acceptance of models, simulations, and data, 2007.
[47] Strang, G.; Fix, G., An Analysis of the Finite Element Method (2008), Wellesley-Cambridge · Zbl 0278.65116
[48] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 43-69 (2000) · Zbl 0983.65127
[49] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method: an example of its implementation and illustration of its performance, Int. J. Numer. Methods Engrg., 47, 1401-1417 (2000) · Zbl 0955.65080
[50] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 4081-4193 (2001) · Zbl 0997.74069
[51] Sukumar, N.; Moes, N.; Moran, B.; Belytschko, T., Extended finite element method for three dimensional crack modelling, Int. J. Numer. Methods Engrg., 48, 11, 1549-1570 (2000) · Zbl 0963.74067
[52] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1988), The Oxford University Press · Zbl 0626.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.