×

Higher-order meshing of implicit geometries. I: Integration and interpolation in cut elements. (English) Zbl 1439.65212

Summary: An accurate implicit description of geometries is enabled by the level-set method. Level-set data is given at the nodes of a higher-order background mesh and the interpolated zero-level sets imply boundaries of the domain or interfaces within. The higher-order accurate integration of elements cut by the zero-level sets is described. The proposed strategy relies on an automatic meshing of the cut elements. Firstly, the zero-level sets are identified and meshed by higher-order surface elements. Secondly, the cut elements are decomposed into conforming sub-elements on the two sides of the zero-level sets. Any quadrature rule may then be employed within the sub-elements. The approach is described in two and three dimensions without any requirements on the background meshes. Special attention is given to the consideration of corners and edges of the implicit geometries.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

XFEM; CutFEM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Szabó, B.; Düster, A.; Rank, E., The p-version of the finite element method, (Encyclopedia of Computational Mechanics (2004), John Wiley & Sons: John Wiley & Sons Chichester), 119-139
[2] Šolín, P.; Segeth, K.; Doležel, I., Higher-Order Finite Element Methods (2003), CRC Press: CRC Press Boca Raton, FL
[3] Bathe, K., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[4] Belytschko, T.; Liu, W.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0959.74001
[5] Zienkiewicz, O.; Taylor, R., The Finite Element Method, Vol. 1-3 (2000), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 0991.74002
[6] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 2680-2686 (2010) · Zbl 1231.65207
[7] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 328-341 (2012) · Zbl 1316.65099
[8] Burman, E.; Claus, S.; Hansbo, P.; Larson, M.; Massing, A., CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 472-501 (2015) · Zbl 1352.65604
[9] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[10] Abedian, A.; Parvizian, J.; Düster, A.; Rank, E., The finite cell method for the j2 flow theory of plasticity, Finite Elem. Anal. Des., 69, 37-47 (2013)
[11] Düster, A.; J. Parvizian, Z. Y.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 3768-3782 (2008) · Zbl 1194.74517
[12] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: h- and p-extension for embedded domain problems in solid mechanics, Comput. Mech., 41, 121-133 (2007) · Zbl 1162.74506
[13] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Internat. J. Numer. Methods Engrg., 89, 1171-1202 (2012) · Zbl 1242.74161
[14] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models, Arch. Comput. Mech. Engrg., 22, 391-455 (2015) · Zbl 1348.65056
[15] Uzgoren, E.; J. Sim, J.; Shyy, W., Marker-based, 3-d adaptive cartesian grid method for multiphase flow around irregular geometries, Comput. Phys. Comm., 5, 1-41 (2009) · Zbl 1364.76229
[16] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156, 209-240 (1999) · Zbl 0957.76043
[17] Leveque, R.; Randall, J.; Li, Z., Immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[18] Saiki, E.; Biringen, S., Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method, J. Comput. Phys., 123, 450-465 (1996) · Zbl 0848.76052
[19] Löhner, R.; Cebral, J.; Camelli, F.; Baum, J.; Mestreau, E.; Soto, O., Adaptive embedded/immersed unstructured grid techniques, Arch. Comput. Methods Eng., 14, 279-301 (2007) · Zbl 1127.76047
[20] Neittaanmäki, P.; Tiba, D., An embedding of domains approach in free boundary problems and optimal design, SIAM J. Control Optim., 33, 1587-1602 (1995) · Zbl 0843.49024
[21] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[22] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[23] Fries, T.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[24] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 43-69 (2000) · Zbl 0983.65127
[25] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method: an example of its implementation and illustration of its performance, Internat. J. Numer. Methods Engrg., 47, 1401-1417 (2000) · Zbl 0955.65080
[26] Babuška, I.; Caloz, G.; Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 945-981 (1994) · Zbl 0807.65114
[27] Babuška, I.; Melenk, J., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[28] Melenk, J.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[29] Sukumar, N.; Chopp, D.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 6183-6200 (2001) · Zbl 1029.74049
[30] Goldstein, C., The weak element method applied to helmholtz type equations, Appl. Numer. Math., 2, 409-426 (1986) · Zbl 0611.65070
[31] Rose, M., Weak element approximations to elliptic differential equations, Numer. Math., 24, 185-204 (1975) · Zbl 0294.35028
[32] Cessenat, O.; Despres, B., Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional helmholtz problem, SIAM J. Numer. Anal., 35, 255-299 (1998) · Zbl 0955.65081
[33] Monk, P.; Wang, D.-Q., A least-squares method for the helmholtz equation, Comput. Methods Appl. Mech. Engrg., 175, 121-136 (1999) · Zbl 0943.65127
[34] Mote, C., Global-local finite element, Internat. J. Numer. Methods Engrg., 3, 565-574 (1971) · Zbl 0248.65062
[35] Noor, A., Global-local methodologies and their applications to nonlinear analysis, Finite Elem. Anal. Des., 2, 333-346 (1986)
[36] Chen, G.; Ohnishi, Y.; Ito, T., Development of high-order manifold method, Internat. J. Numer. Methods Engrg., 43, 685-712 (1998) · Zbl 0945.74078
[37] Shi, G., Manifold method of material analysis, (Trans. 9th Army Conf. on Applied Mathematics and Computing (1992), Minneapolis: Minneapolis Minnesota), 51-76
[38] Abedian, A.; Parvizian, J.; Düster, A.; Khademyzadeh, H.; Rank, E., Performance of different integration schmenes in facing discontinuities in the finite Cell Method, Int. J. Comput. Methods, 10, 1-24 (2013) · Zbl 1359.65245
[39] Moumnassi, M.; Belouettar, S.; Béchet, É.; Bordas, S.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Engrg., 200, 774-796 (2011) · Zbl 1225.65111
[40] Dréau, K.; Chevaugeon, N.; Moës, N., Studied X-FEM enrichment to handle material interfaces with higher order finite element, Comput. Methods Appl. Mech. Engrg., 199, 1922-1936 (2010) · Zbl 1231.74406
[41] Stazi, F.; Budyn, E.; Chessa, J.; Belytschko, T., An extended finite element method with higher-order elements for curved cracks, Comput. Mech., 31, 38-48 (2003) · Zbl 1038.74651
[42] Zi, G.; Belytschko, T., New crack-tip elements for XFEM and applications to cohesive cracks, Internat. J. Numer. Methods Engrg., 57, 2221-2240 (2003) · Zbl 1062.74633
[43] Legrain, G.; Chevaugeon, N.; Dréau, K., High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput. Methods Appl. Mech. Engrg., 241-244, 172-189 (2012) · Zbl 1353.74071
[44] Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M., High-order extended finite element method for cracked domains, Internat. J. Numer. Methods Engrg., 64, 354-381 (2005) · Zbl 1181.74136
[45] Legay, A.; Wang, H.; Belytschko, T., Strong and weak arbitrary discontinuities in spectral finite elements, Internat. J. Numer. Methods Engrg., 64, 991-1008 (2005) · Zbl 1167.74045
[46] Cheng, K.; Fries, T., Higher-order XFEM for curved strong and weak discontinuities, Internat. J. Numer. Methods Engrg., 82, 564-590 (2010) · Zbl 1188.74052
[47] Fries, T.; Omerović, S., Higher-order accurate integration of implicit geometries, Internat. J. Numer. Methods Engrg., 106, 323-371 (2016) · Zbl 1352.65498
[49] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite element method, Internat. J. Numer. Methods Engrg., 66, 761-795 (2006) · Zbl 1110.74858
[50] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Internat. J. Numer. Methods Engrg., 77, 1-29 (2009) · Zbl 1195.74201
[51] Müller, B.; Kummer, F.; Oberlack, M., Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96, 512-528 (2013) · Zbl 1352.65083
[52] Mousavi, S.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47, 535-554 (2011) · Zbl 1221.65078
[53] Stavrev, A.; Nguyen, L.; Shen, R.; Varduhn, V.; Behr, M.; Elgeti, S.; Schillinger, D., Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method, Comput. Methods Appl. Mech. Engrg., 310, 646-673 (2016) · Zbl 1439.65195
[54] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: Accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Engrg., 306, 406-426 (2016) · Zbl 1436.65022
[55] Joulaian, M.; Hubrich, S.; Düster, A., Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57, 979-999 (2016) · Zbl 1382.65066
[56] Lehrenfeld, C., High order unfitted finite element methods on level set domains using isoparametric mappings, Comput. Methods Appl. Mech. Engrg., 300, 716-733 (2016) · Zbl 1425.65168
[57] Fries, T. P., Higher-order accurate integration for cut elements with Chen-Babuška nodes, (Ventura, G.; Benvenuti, E., Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods. Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods, SEMA SIMAI Springer Series, vol. 12 (2016)), 245-269 · Zbl 1375.65150
[58] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer: Springer Berlin · Zbl 1026.76001
[59] Sethian, J., Level Set Methods and Fast Marching Methods (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0929.65066
[60] Li, Z., A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., 35, 230-254 (1998) · Zbl 0915.65121
[61] Gordon, W.; Hall, C., Construction of curvi-linear co-ordinate systems and applications to mesh generation, Internat. J. Numer. Methods Engrg., 7, 461-477 (1973) · Zbl 0271.65062
[62] Gordon, W.; Hall, C., Transfinite element methods: blending function interpolation over arbitrary curved element domains, Numer. Math., 21, 109-129 (1973) · Zbl 0254.65072
[63] Scott, R., Finite Element Techniques for Curved Boundaries (1973), Massachusetts Institute of Technology: Massachusetts Institute of Technology Cambridge, MA, USA, Ph.D. dissertation
[64] Gockenbach, M., Understanding and Implementing the Finite Element Method (2006), SIAM: SIAM Philadelphia, PA · Zbl 1105.65112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.