×

Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs. (English) Zbl 1464.62129

Summary: Finding optimal designs for nonlinear models is complicated because the design criterion depends on the model parameters. If a plausible region for these parameters is available, a minimax optimal design may be used to remove this dependency by minimizing the maximum inefficiency that may arise due to misspecification in the parameters. Minimax optimal designs are often analytically intractable and are notoriously difficult to find, even numerically. A population-based evolutionary algorithm called imperialist competitive algorithm (ICA) is applied to find minimax or nearly minimax \(D\)-optimal designs for nonlinear models. The usefulness of the algorithm is also demonstrated by showing it can hybridize with a local search to find optimal designs under a more complicated criterion, such as standardized maximin optimality.

MSC:

62-08 Computational methods for problems pertaining to statistics
62K05 Optimal statistical designs
90C59 Approximation methods and heuristics in mathematical programming

Software:

NLopt; Rsolnp; pso; GAMS; Rcpp; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdelbasit, K. M.; Plackett, R. L., Experimental design for binary data, J. Amer. Statist. Assoc., 78, 381, 90-98, (1983) · Zbl 0501.62071
[2] Atashpaz-Gargari, E., 2008. Imperialist competitive algorithm, ica.
[3] Atashpaz-Gargari, E.; Lucas, C., Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, (IEEE Congress on Evolutionary computation, 2007. CEC 2007, (2007), IEEE), 4661-4667
[4] Atkinson, A. C., The usefulness of optimum experimental designs, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 59-76, (1996) · Zbl 0850.62602
[5] Atkinson, A. C., A segmented algorithm for simulated annealing, Stat. Comput., 221-230, (1992)
[6] Atkinson, A. C.; Donev, A. N.; Tobias, R. D., Optimum experimental designs, with SAS, vol. 34, (2007), Oxford University Press Oxford
[7] Atwood, C. L., Optimal and efficient designs of experiments, Ann. Math. Statist., 1570-1602, (1969) · Zbl 0182.51905
[8] Bendtsen, C., 2012. pso: particle swarm optimization, r package version 1.0.3. URL http://CRAN.R-project.org/package=pso.
[9] Berger, M. P.; King, C. J.; Wong, W. K., Minimax D-optimal designs for item response theory models, Psychometrika, 65, 3, 377-390, (2000) · Zbl 1291.62194
[10] Berger, M. P.F.; Wong, W. K., An introduction to optimal designs for social and biomedical research, (2009), Jonh Wiley & Sons Chichester, West Sussex, UK · Zbl 1182.62154
[11] Berger, M. P.F.; Wong, W. K., Applied optimal designs, (2005), Jonh Wiley & Sons Chichester, West Sussex, UK · Zbl 1076.62538
[12] Bogacka, B.; Patan, M.; Johnson, P. J.; Youdim, K.; Atkinson, A. C., Optimum design of experiments for enzyme inhibition kinetic models, J. Biopharm. Statist., 21, 3, 555-572, (2011)
[13] Bretz, F.; Dette, H.; Pinheiro, J. C., Practical considerations for optimal designs in clinical dose finding studies, Stat. Med., 29, 7-8, 731-742, (2010)
[14] Brooke, A., Kendrick, D., Meeraus, A., 1996. GAMS Release 2.25: A user’s guide, GAMS Development Corporation Washington, DC.
[15] Chaloner, K.; Larntz, K., Optimal Bayesian design applied to logistic regression experiments, J. Statist. Plann. Inference, 21, 2, 191-208, (1989) · Zbl 0666.62073
[16] Chen, R.-B.; Chang, S.-P.; Wang, W.; Tung, H.-C.; Wong, W. K., Minimax optimal designs via particle swarm optimization methods, Stat. Comput., 1-14, (2014)
[17] Chernoff, H., Locally optimal designs for estimating parameters, Ann. Math. Statist., 24, 4, 586-602, (1953) · Zbl 0053.10504
[18] Dette, H., Designing experiments with respect to standardized optimality criteria, J. R. Stat. Soc. Ser. B Stat. Methodol., 59, 1, 97-110, (1997) · Zbl 0884.62081
[19] Dette, H.; Biedermann, S., Robust and efficient designs for the Michaelis-Menten model, J. Amer. Statist. Assoc., 98, 463, 679-686, (2003) · Zbl 1040.62065
[20] Dette, H.; Kiss, C.; Bevanda, M.; Bretz, F., Optimal designs for the EMAX, log-linear and exponential models, Biometrika, 97, 2, 513-518, (2010) · Zbl 1233.62146
[21] Dette, H.; Melas, V. B.; Wong, W. K., Locally D-optimal designs for exponential regression models, Statist. Sinica, 16, 4, 789-803, (2006) · Zbl 1107.62060
[22] Dette, H.; Neugebauer, H.-M., Bayesian D-optimal designs for exponential regression models, J. Statist. Plann. Inference, 60, 2, 331-349, (1997) · Zbl 0900.62408
[23] Dette, H.; Wong, W. K., E-optimal designs for the Michaelis-Menten model, Statist. Probab. Lett., 44, 4, 405-408, (1999) · Zbl 0940.62066
[24] Drain, D.; Carlyle, W. M.; Montgomery, D. C.; Borrow, C.; Anderson-Cook, C., A genetic algorithm hybrid for constructing optimal response surface designs, Qual. Reliab. Eng. Int., 637-650, (2004)
[25] Duarte, B. P.; Wong, W. K., A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models, Stat. Comput., 1-18, (2013)
[26] Eberhart, R.C., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Vol. 1, New York, NY, pp. 39-43.
[27] Eddelbuettel, D.; François, R.; Allaire, J.; Chambers, J.; Bates, D.; Ushey, K., Rcpp: seamless R and C++ integration, J. Stat. Softw., 40, 8, 1-18, (2011)
[28] Gablonsky, J. M.; Kelley, C. T., A locally-biased form of the DIRECT algorithm, J. Global Optim., 21, 1, 27-37, (2001) · Zbl 1039.90049
[29] Ghalanos, A., Theussl, S., 2014. Rsolnp: general non-linear optimization using augmented lagrange multiplier method, r package version 1.15. URL http://CRAN.R-project.org/package=Rsolnp.
[30] Haines, L. M., The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models, Technometrics, 29, 4, 439-447, (1987) · Zbl 0632.62071
[31] Hamada, M.; Martz, H.; Reese, C.; Wilson, A., Finding near-optimal Bayesian experimental designs via genetic algorithms, Amer. Statist., 55, 3, 175-181, (2001) · Zbl 1182.62156
[32] Hamel, A.; Mohellebi, H.; Feliachi, M., Imperialist competitive algorithm and particle swarm optimization comparison for eddy current non-destructive evaluation, Prz. Elektrotech., 88, 9A, 285-289, (2012)
[33] Heredia-Langner, A.; Carlyle, W.; Montgomery, D. C.; Borror, C. M.; Runger, G. C., Genetic algorithms for the construction of D-optimal designs, J. Qual. Technol., 8-46, (2003)
[34] Holland, J. H., Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, (1975), University of Michigan Press USA · Zbl 0317.68006
[35] Hosseini, S.; Al Khaled, A., A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research, Appl. Soft Comput., 24, 1078-1094, (2014)
[36] Hosseini, S.; Khaled, A. A.; Vadlamani, S., Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem, Neural Comput. Appl., 25, 7, 1871-1885, (2014)
[37] Johnson, S.G., 2014. The NLopt nonlinear-optimization package. URL http://ab-initio.mit.edu/nlopt.
[38] Kaveh, A.; Talatahari, S., Optimum design of skeletal structures using imperialist competitive algorithm, Comput. Struct., 88, 21, 1220-1229, (2010)
[39] Kaveh, A.; Talatahari, S., Imperialist competitive algorithm for engineering design problems, Asian J. Civ. Eng., 11, 6, 675-697, (2010) · Zbl 1223.90082
[40] Khaled, A. A.; Hosseini, S., Fuzzy adaptive imperialist competitive algorithm for global optimization, Neural Comput. Appl., 26, 4, 813-825, (2014)
[41] Kiefer, J. C., Collected papers III: design of experiments, (1985), Springer Verlag
[42] King, J.; Wong, W. K., Minimax D-optimal designs for the logistic model, Biometrics, 56, 4, 1263-1267, (2000) · Zbl 1060.62545
[43] King, J.; Wong, W. K., Optimal designs for the power logistic model, J. Stat. Comput. Simul., 74, 11, 779-791, (2004) · Zbl 1060.62083
[44] Kirkpatrick, S.; Vecchi, M., Optimization by simmulated annealing, Science, 220, 4598, 671-680, (1983) · Zbl 1225.90162
[45] Lehmann, E. L.; Casella, G., Theory of point estimation, vol. 31, (1998), Springer Science & Business Media · Zbl 0916.62017
[46] Lin, C. D.; Anderson-Cook, C. M.; Hamada, M. S.; Moore, L. M.; Sitter, R. R., Using genetic algorithms to design experiments: a review, Qual. Reliab. Eng. Int., 31, 2, 155-167, (2015)
[47] Lin, J. L.; Cho, C. W.; Chuan, H. C., Imperialist competitive algorithms with perturbed moves for global optimization, (Applied Mechanics and Materials, Vol. 284, (2013), Trans Tech Publ), 3135-3139
[48] Lin, J.-L.; Chuan, H.-C.; Tsai, Y.-H.; Cho, C.-W., Improving imperialist competitive algorithm with local search for global optimization, (Modelling Symposium, AMS, 2013 7th Asia, (2013), IEEE), 61-64
[49] Mandal, A.; Wong, W. K.; Yu, Y., Algorithmic searches for optimal designs, (Handbook of Design and Analysis of Experiments, (2015), Chapman & Hall/CRC Boca Raton), 755-784, (Chapter 21) · Zbl 1352.62126
[50] Meyer, R. K.; Nachtsheim, C. J., Constructing exact D-optimal experimental designs by simulated annealing, Amer. J. Math. Management Sci., 8, 3-4, 329-359, (1988) · Zbl 0676.65148
[51] Montepiedra, G.; Myers, D.; Yeh, A. B., Application of genetic algorithms to the construction of exact D-optimal designs, J. Appl. Stat., 817-826, (1998) · Zbl 0933.62063
[52] Qiu, J.; Chen, R.-B.; Wang, W.; Wong, W. K., Using animal instincts to design efficient biomedical studies via particle swarm optimization, Swarm Evol. Comput., 18, 1-10, (2014)
[53] R Core Team, 2014. R: A language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
[54] Rasch, D., Optimum experimental design in nonlinear regression, Comm. Statist. Theory Methods, 19, 12, 4786-4806, (1990) · Zbl 0734.62078
[55] Silvey, S. D.S. D., Optimal design: an introduction to the theory for parameter estimation, (1980), Chapman and Hall London, New York, includes index · Zbl 0468.62070
[56] Sitter, R. R., Robust designs for binary data, Biometrics, 48, 4, 1145-1155, (1992)
[57] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359, (1997) · Zbl 0888.90135
[58] Talatahari, S.; Azar, B. F.; Sheikholeslami, R.; Gandomi, A., Imperialist competitive algorithm combined with chaos for global optimization, Commun. Nonlinear Sci. Numer. Simul., 17, 3, 1312-1319, (2012) · Zbl 1241.90193
[59] Wilmut, M.; Zhou, J., D-optimal minimax design criterion for two-level fractional factorial designs, J. Statist. Plann. Inference, 141, 1, 576-587, (2011) · Zbl 1197.62110
[60] Wong, W. K.; Chen, R.-B.; Huang, C.-C.; Wang, W., A modified particle swarm optimization technique for finding optimal designs for mixture models, PLoS One, 10, 6, e0124720, (2015)
[61] Woods, D., Robust designs for binary data: applications of simulated annealing, J. Stat. Comput. Simul., 80, 1, 29-41, (2010) · Zbl 1184.62134
[62] Zhou, J., D-optimal minimax regression designs on discrete design space, J. Statist. Plann. Inference, 138, 12, 4081-4092, (2008) · Zbl 1146.62059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.