×

zbMATH — the first resource for mathematics

Holography and wormholes in \(2+1\) dimensions. (English) Zbl 1223.83037
This paper works out the authors’ real-time gauge-gravity prescription for a class of \((2+1)\)-dimensional non-rotating “wormhole” space-times. The results are rather explicit because (1) the ambient metric may be given here by a truncated series and (2) the space-times under consideration are parameterized by a Teichmüller space. The authors stress that “there is a direct and unambiguous holographic interpretation of the entire Lorentzian wormhole space-times.”

MSC:
83C80 Analogues of general relativity in lower dimensions
83C57 Black holes
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C15 Exact solutions to problems in general relativity and gravitational theory
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998) · Zbl 0914.53047
[2] Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998) · Zbl 1355.81126
[3] Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998) · Zbl 0914.53048
[4] Skenderis K., van Rees B.C.: Real-time gauge/gravity duality. Phys. Rev. Lett. 101, 081601 (2008) · Zbl 1228.81244
[5] Skenderis, K., van Rees, B.C.: Real-time gauge/gravity duality: Prescription, Renormalization and Examples. http://arxiv.org/abs/0812.2909v2 [hep-th], 2009
[6] Schwinger J.S.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961) · Zbl 0098.43503
[7] Bakshi P.M., Mahanthappa K.T.: Expectation value formalism in quantum field theory. 1. J. Math. Phys. 4, 1–11 (1963) · Zbl 0126.24401
[8] Bakshi P.M., Mahanthappa K.T.: Expectation value formalism in quantum field theory. 2. J. Math. Phys. 4, 12–16 (1963) · Zbl 0126.24401
[9] Keldysh L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964) [Sov. Phys. JETP 20, 1018 (1965)]
[10] Hartle J.B., Hawking S.W.: Wave Function of the Universe. Phys. Rev. D 28, 2960–2975 (1983) · Zbl 1370.83118
[11] Maldacena J.M.: Eternal black holes in Anti-de-Sitter.. JHEP 04, 021 (2003)
[12] Aminneborg S., Bengtsson I., Brill D., Holst S., Peldan P.: Black holes and wormholes in 2+1 dimensions. Class. Quant. Grav. 15, 627–644 (1998) · Zbl 0913.53041
[13] Brill, D.: Black holes and wormholes in 2+1 dimensions. http://arxiv.org/abs/gr-qc/9904083v2 , 1999 · Zbl 0993.83018
[14] Skenderis K., Solodukhin S.N.: Quantum effective action from the AdS/CFT correspondence. Phys. Lett. B 472, 316–322 (2000) · Zbl 0959.81102
[15] Krasnov K.: Holography and Riemann surfaces. Adv. Theor. Math. Phys. 4, 929–979 (2000) · Zbl 1011.81068
[16] Henningson M., Skenderis K.: Holography and the Weyl anomaly. Fortsch. Phys. 48, 125–128 (2000) · Zbl 0976.81093
[17] Henningson M., Skenderis K.: The holographic Weyl anomaly. JHEP 07, 023 (1998) · Zbl 0958.81083
[18] de Haro S., Solodukhin S.N., Skenderis K.: Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001) · Zbl 0984.83043
[19] Skenderis K.: Asymptotically Anti-de Sitter spacetimes and their stress energy tensor. Int. J. Mod. Phys. A 16, 740–749 (2001) · Zbl 0982.83007
[20] Banados M., Teitelboim C., Zanelli J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992) · Zbl 0968.83514
[21] Banados M., Henneaux M., Teitelboim C., Zanelli J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506–1525 (1993)
[22] Barbot T.: Causal properties of AdS-isometry groups. I: Causal actions and limit sets. Adv. Theor. Math. Phys. 12, 1–66 (2008) · Zbl 1151.83311
[23] Barbot, T.: Causal properties of AdS-isometry groups. II: BTZ multi black-holes. http://arxiv.org/abs/math.gt/0510065v2 [math, GT], 2006 · Zbl 1153.83349
[24] van Rees, B.: Worm holes in 2+1 dimensions. Master’s thesis, http://staff.science.uva.nl/\(\sim\)brees/report/report.pdf June, 2006
[25] Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmnüller Spaces. Berlin-Heidelberg Newyork: Springer-Verlag, 1992 · Zbl 0754.30001
[26] Lehto O.: Univalent Functions and Teichmüller Spaces. Springer-Verlag, Berlin-Heidelberg Newyork (1986) · Zbl 0606.30001
[27] Nag S.: The Complex Analytic Theory of Teichmüller spaces. Newyork, John Wiley & Sons (1988) · Zbl 0667.30040
[28] Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological Censorship and Higher Genus Black Holes. Phys. Rev. D60, 104039 (1999) · Zbl 0977.81130
[29] Carlip S., Teitelboim C.: Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions. Phys. Rev. D51, 622–631 (1995)
[30] Krasnov K.: On holomorphic factorization in asymptotically AdS 3D gravity. Class. Quant. Grav. 20, 4015–4042 (2003) · Zbl 1048.83018
[31] Krasnov K.: Black Hole Thermodynamics and Riemann Surfaces. Class. Quant. Grav. 20, 2235–2250 (2003) · Zbl 1029.83027
[32] Takhtajan L., Zograf P.: On uniformization of Riemann surfaces and the Weyl-Peterson metric on Teichmuller and Schottky spaces. Math. USSR Sbornik 60, 297–313 (1988) · Zbl 0663.32017
[33] Imbimbo C., Schwimmer A., Theisen S., Yankielowicz S.: Diffeomorphisms and holographic anomalies. Class. Quant. Grav. 17, 1129–1138 (2000) · Zbl 0952.81052
[34] Maldacena J.M., Maoz L.: Wormholes in AdS. JHEP 02, 053 (2004)
[35] Parlier H.: Fixed point free involutions on Riemann surfaces. Israel J. Math. 166, 297–311 (2008) · Zbl 1157.30031
[36] Anderson, M.T.: Geometric aspects of the AdS/CFT correspondence. http://arxiv.org/abs/hep-th/0403087v2 , 2004 · Zbl 1071.81553
[37] Papadimitriou I., Skenderis K.: Thermodynamics of asymptotically locally AdS spacetimes. JHEP 08, 004 (2005) · Zbl 1081.81085
[38] Freivogel B. et al.: Inflation in AdS/CFT. JHEP 03, 007 (2006) · Zbl 1226.83060
[39] Louko J., Marolf D.: Single-exterior black holes and the AdS-CFT conjecture. Phys. Rev. D59, 066002 (1999)
[40] Hawking S.W., Page D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)
[41] Maldacena J.M., Strominger A.: AdS(3) black holes and a stringy exclusion principle. JHEP 12, 005 (1998) · Zbl 0951.83019
[42] Yin, X.: Partition Functions of Three-Dimensional Pure Gravity. http://arxiv.org/abs/0710.2129v2 [hep-th] (2008) · Zbl 1154.83306
[43] Aminneborg S., Bengtsson I., Holst S.: A spinning Anti-de Sitter wormhole. Class. Quant. Grav. 16, 363–382 (1999) · Zbl 0942.83047
[44] Brill D.: 2+1-dimensional black holes with momentum and angular momentum. Annalen Phys. 9, 217–226 (2000) · Zbl 0962.83028
[45] Krasnov K.: Analytic continuation for asymptotically AdS 3D gravity. Class. Quant. Grav. 19, 2399–2424 (2002) · Zbl 1010.83040
[46] Maloney, A.: To appear
[47] Skenderis K., Taylor M.: The fuzzball proposal for black holes. Phys. Rept. 467, 117–171 (2008)
[48] Crnkovic, C., Witten, E.: Covariant description of canonical formalism in geometrical theories. Print-86-1309 (Princeton)
[49] Crnkovic C.: Symplectic geometry and (super)Poincare algebra in geometrical theories. Nucl. Phys. B 288, 419 (1987)
[50] Lee J., Wald R.M.: Local symmetries and constraints. J. Math. Phys. 31, 725–743 (1990) · Zbl 0704.70013
[51] van Rees, B.: Dynamics and the gauge/gravity duality. PhD thesis, 2010, to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.