×

Sensitivity of risk measures with respect to the normal approximation of total claim distributions. (English) Zbl 1228.91040

Summary: A simple and commonly used method to approximate the total claim distribution of a (possibly weakly dependent) insurance collective is the normal approximation. In this article, we investigate the error made when the normal approximation is plugged in a fairly general distribution-invariant risk measure. We focus on the rate of convergence of the error relative to the number of clients, we specify the relative error’s asymptotic distribution, and we illustrate our results by means of a numerical example. Regarding the risk measure, we take into account distortion risk measures as well as distribution-invariant coherent risk measures.

MSC:

91B30 Risk theory, insurance (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Athreya, K. B.; Lahiri, S. N., Measure Theory and Probability Theory (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1125.60001
[2] Bäuerle, N.; Müller, A., Stochastic orders and risk measures: consistency and bounds, Insurance: Mathematics and Economics, 38, 132-148 (2006) · Zbl 1105.60017
[3] Bellini, F.; Rosazza Gianin, E., On Haezendonck risk measures, Journal of Banking & Finance, 32, 6, 986-994 (2008)
[4] Beutner, E.; Zähle, H., A modified functional delta method and its application to the estimation of risk functionals, Journal of Multivariate Analysis, 101, 2452-2463 (2010) · Zbl 1213.62055
[5] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[6] Bradley, R. C., Basic properties of strong mixing conditions. A survey and some open problems, Probability Surveys, 2, 107-144 (2005) · Zbl 1189.60077
[7] Carrasco, M.; Chen, X., Mixing and moment properties of various GARCH and stochastic volatility models, Econometric Theory, 18, 17-39 (2002) · Zbl 1181.62125
[8] Cheridito, P.; Li, T., Risk mesures on Orlicz hearts, Mathematical Finance, 19, 2, 189-214 (2009) · Zbl 1168.91409
[9] Delbaen, F., Coherent measures of risk on general probability spaces, (Sandmann, K.; Schönbucher, P. J., Advances in Finance and Stochastics (2002), Springer-Verlag: Springer-Verlag Berlin), 1-37 · Zbl 1020.91032
[10] Denneberg, D., Non-Additive Measure and Integral (1994), Kluwer: Kluwer Dordrecht · Zbl 0826.28002
[11] Dhaene, J.; Vanduffel, S.; Goovaerts, M. J.; Kaas, R.; Tang, Q.; Vyncke, D., Risk measures and comonotonicity: a review, Stochastic Models, 22, 573-606 (2006) · Zbl 1159.91403
[12] Doukhan, P., (Mixing: Properties and Examples. Mixing: Properties and Examples, Lecture Notes in Statistics (1994), Springer-Verlag: Springer-Verlag New York) · Zbl 0801.60027
[13] Edgar, G. A.; Sucheston, L., Stopping Times and Directed Processes (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0779.60032
[14] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events: For Finance and Insurance (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0873.62116
[15] Fischer, T., Risk allocation by coherent risk measures based on one-sided moments, Insurance: Mathematics and Economics, 32, 1, 135-146 (2003) · Zbl 1055.91048
[16] Föllmer, H.; Schied, A., Stochastic Finance. An Introduction in Discrete Time (2004), de Gruyter: de Gruyter Berlin · Zbl 1126.91028
[17] Goovaerts, M. J.; Kaas, R.; Dhaene, J.; Tang, Q., Some new classes of consistent risk measures, Insurance: Mathematics and Economics, 34, 4), 505-516 (2004) · Zbl 1188.91087
[18] Haezendonck, J.; Goovaerts, M. J., A new premium calculation principle based on Orlicz norms, Insurance: Mathematics and Economics, 1, 41-51 (1982) · Zbl 0495.62091
[19] Hardy, M.R., Wirch, J., 2001. Distortion risk measures: coherence and stochastic dominance. Working Paper. Avaible at: www.gloriamundi.com; Hardy, M.R., Wirch, J., 2001. Distortion risk measures: coherence and stochastic dominance. Working Paper. Avaible at: www.gloriamundi.com
[20] Hipp, C., Convergence rates in the central limit theorem for stationary mixing sequences of random variables, Journal of Multivariate Analysis, 9, 560-578 (1979) · Zbl 0431.60021
[21] Ibragimov, I. A., Some limit theorems for stationary sequences, Theory of Probability and its Applications, 7, 349-382 (1962) · Zbl 0119.14204
[22] Jones, B. L.; Zitikis, R., Empirical estimation of risk measures and related quantities, The North American Actuarial Journal, 8, 3, 114-118 (2004)
[23] Jones, B. L.; Zitikis, R., Risk measures, distortion parameters, and their empirical estimation, Insurance: Mathematics and Economics, 41, 2, 279-297 (2007) · Zbl 1193.91065
[24] Jouini, E.; Schachermayer, W.; Touzi, N., Law invariant risk measures have the Fatou property, Advances in Mathematical Economics, 9, 49-71 (2006) · Zbl 1198.46028
[25] Krätschmer, V., 2007. On \(\sigma\) http://sfb649.wiwi.hu-berlin.de; Krätschmer, V., 2007. On \(\sigma\) http://sfb649.wiwi.hu-berlin.de
[26] Kusuoka, S., On law invariant risk measures, Advances in Mathematical Economics, 3, 505-513 (2001)
[27] Lindner, A. M., Stationarity, mixing, distributional properties and moments of GARCH \((p, q)\) processes, (Andersen, T. G.; Davis, R. A.; Kreiß, J.-P.; Mikosch, T., Handbook of Financial Time Series (2008), Springer-Verlag: Springer-Verlag Berlin), 41-69 · Zbl 1178.62101
[28] Michel, R., Nonuniform central limit bounds with applications to probabilities of deviations, Annals of Probability, 4, 102-106 (1976) · Zbl 0337.60026
[29] Peligrad, M., Convergence rates of the strong law for stationary mixing sequences, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 70, 307-314 (1985) · Zbl 0554.60038
[30] Peligrad, M.; Shao, Q. M., Self-normalized central limit theorem for sums of weakly dependent random variables, Journal of Theoretical Probability, 7, 2, 309-338 (1994) · Zbl 0799.60020
[31] Pflug, G.; Römisch, W., Modelling, Managing and Measuring Risk (2007), World Scientific: World Scientific Singapore · Zbl 1153.91023
[32] Philipp, W.; Stout, W. F., Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of the American Mathematical Society, 2, 161 (1975), Providence · Zbl 0343.60018
[33] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), Marcel Dekker: Marcel Dekker New York · Zbl 0724.46032
[34] Rio, E., A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws, Annals of Probability, 23, 918-937 (1994) · Zbl 0836.60026
[35] Rosenblatt, M., A central limit theorem and a mixing condition, Proceedings of the National Academy of Sciences of the United States of America, 42, 412-413 (1956) · Zbl 0070.36403
[36] Ruszczynski, A.; Shapiro, A., Optimization of convex risk functions, Mathematics of Operations Research, 31, 433-451 (2006) · Zbl 1278.90283
[37] Schneider, E., On the speed of convergence in the random central limit theorem for \(\varphi \)-mixing processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 58, 125-138 (1981) · Zbl 0465.60027
[38] Stout, W. F., Almost Sure Convergence (1974), Academic Press: Academic Press New York · Zbl 0165.52702
[39] Wang, S., Premium calculation by transforming the layer premium density, ASTIN Bulletin, 26, 71-92 (1996)
[40] Wang, S.; Dhaene, J., Comontonicity, correlation order and premium principles, Insurance: Mathematics and Economics, 22, 235-242 (1998) · Zbl 0909.62110
[41] Zähle, H., 2010. Rates of almost sure convergence of plug-in estimates for distortion risk measures. Metrika (forthcoming) doi:10.1007/s00184-010-0302-z; Zähle, H., 2010. Rates of almost sure convergence of plug-in estimates for distortion risk measures. Metrika (forthcoming) doi:10.1007/s00184-010-0302-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.