×

Computational homogenization of microfractured continua using weakly periodic boundary conditions. (English) Zbl 1425.74394

Summary: Computational homogenization of elastic media with stationary cracks is considered, whereby the macroscale stress is obtained by solving a boundary value problem on a Statistical Volume Element (SVE) and the cracks are represented by means of the eXtended Finite Element Method (XFEM). With the presence of cracks on the microscale, conventional BCs (Dirichlet, Neumann, strong periodic) perform poorly, in particular when cracks intersect the SVE boundary. As a remedy, we herein propose to use a mixed variational format to impose periodic boundary conditions in a weak sense on the SVE. Within this framework, we develop a novel traction approximation that is suitable when cracks intersect the SVE boundary. Our main result is the proposition of a stable traction approximation that is piecewise constant between crack-boundary intersections. In particular, we prove analytically that the proposed approximation is stable in terms of the LBB (inf-sup) condition and illustrate the stability properties with a numerical example. We emphasize that the stability analysis is carried out within the setting of weakly periodic boundary conditions, but it also applies to other mixed problems with similar structure, e.g. contact problems. The numerical examples show that the proposed traction approximation is more efficient than conventional boundary conditions (Dirichlet, Neumann, strong periodic) in terms of convergence with increasing SVE size.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

OOFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Geers, M.; Kouznetsova, V.; Brekelmans, W., Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182, (2010) · Zbl 1402.74107
[2] Zohdi, T.; Wriggers, P., A model for simulating the deterioration of structural-scale material responses of microheterogeneous solids, Comput. Methods Appl. Mech. Engrg., 190, 22-23, 2803-2823, (2001) · Zbl 1013.74082
[3] Ostoja-Starzewski, M., Material spatial randomness: from statistical to representative volume element, Probab. Eng. Mech., 21, 2, 112-132, (2006)
[4] Fish, J.; Shek, K.; Pandheeradi, M.; Shephard, M. S., Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Comput. Methods Appl. Mech. Engrg., 148, 1-2, 53-73, (1997) · Zbl 0924.73145
[5] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech. (Ingenieur Archiv), 72, 4-5, 300-317, (2002) · Zbl 1032.74010
[6] Babuška, I.; Andersson, B.; Smith, P. J.; Levin, K., Damage analysis of fiber composites part I: statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172, 1-4, 27-77, (1999) · Zbl 0956.74048
[7] Temizer, Ä.; Wu, T.; Wriggers, P., On the optimality of the window method in computational homogenization, Int. J. Eng. Sci., 64, 66-73, (2013) · Zbl 1423.74795
[8] Simo, J. C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. Mech., 12, 5, 277-296, (1993) · Zbl 0783.73024
[9] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 9, 1267-1282, (1999) · Zbl 0932.74067
[10] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 5, 601-620, (1999) · Zbl 0943.74061
[11] Babuska, I.; Caloz, G.; Osborn, J. E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 4, 945-981, (1994) · Zbl 0807.65114
[12] Fries, T.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 3, 253-304, (2010) · Zbl 1202.74169
[13] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 1, 131-150, (1999) · Zbl 0955.74066
[14] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng., 48, 12, 1741-1760, (2000) · Zbl 0989.74066
[15] Dolbow, J.; Moës, N.; Belytschko, T., An extended finite element method for modeling crack growth with frictional contact, Comput. Methods Appl. Mech. Engrg., 190, 51-52, 6825-6846, (2001) · Zbl 1033.74042
[16] Coenen, E.; Kouznetsova, V.; Geers, M., Novel boundary conditions for strain localization analyses in microstructural volume elements, Int. J. Numer. Methods Eng., 90, 1, 1-21, (2012) · Zbl 1242.74083
[17] Coenen, E. W.C.; Kouznetsova, V. G.; Bosco, E.; Geers, M. G.D., A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework, Int. J. Fract., 178, 1-2, 157-178, (2012)
[18] Bosco, E.; Kouznetsova, V. G.; Coenen, E. W.C.; Geers, M. G.D.; Salvadori, A., A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity, Comput. Mech., 54, 2, 299-319, (2014) · Zbl 1398.74308
[19] Belytschko, T.; Loehnert, S.; Song, J.-H., Multiscale aggregating discontinuities: A method for circumventing loss of material stability, Int. J. Numer. Methods Eng., 73, 6, 869-894, (2008) · Zbl 1195.74008
[20] Larsson, F.; Runesson, K.; Su, F., Variationally consistent computational homogenization of transient heat flow, Int. J. Numer. Methods Eng., 81, 13, 1659-1686, (2010) · Zbl 1183.80109
[21] Larsson, F.; Runesson, K.; Saroukhani, S.; Vafadari, R., Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 11-26, (2011) · Zbl 1225.74069
[22] Sandstom, C.; Larsson, F.; Runesson, K., Weakly periodic boundary conditions for the homogenization of flow in porous media, Adv. Model. Simul. Eng. Sci., 1, 1, 12, (2014)
[23] Öhman, M.; Runesson, K.; Larsson, F., On the variationally consistent computational homogenization of elasticity in the incompressible limit, Adv. Model. Simul. Eng. Sci., 2, 1, 1-29, (2015)
[24] Areias, P. M.A.; Belytschko, T., Analysis of three-dimensional crack initiation and propagation using the extended finite element method, Int. J. Numer. Methods Eng., 63, 760-788, (2005) · Zbl 1122.74498
[25] El-Abbasi, N.; Bathe, K.-J., Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct., 79, 16, 1473-1486, (2001)
[26] Patzák, B.; Bittnar, Z., Design of object oriented finite element code, Adv. Eng. Softw., 32, 10-11, 759-767, (2001) · Zbl 0984.68526
[27] B. Patzák, OOFEM project home page: www.oofem.org (2000). URL http://www.oofem.org.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.