×

Cluster adjacency beyond MHV. (English) Zbl 1414.81250

Summary: We explore further the notion of cluster adjacency, focussing on non-MHV amplitudes. We extend the notion of adjacency to the BCFW decomposition of tree-level amplitudes. Adjacency controls the appearance of poles, both physical and spurious, in individual BCFW terms. We then discuss how this notion of adjacency is connected to the adjacency already observed at the level of symbols of scattering amplitudes which controls the appearance of branch cut singularities. Poles and symbols become intertwined by cluster adjacency and we discuss the relation of this property to the \( \overline{Q} \)-equation which imposes constraints on the derivatives of the transcendental functions appearing in loop amplitudes.

MSC:

81U10 \(n\)-body potential quantum scattering theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry

Software:

GitHub; SpaSM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge, U.K. (1966). · Zbl 0139.46204
[2] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE]. · doi:10.1103/PhysRevLett.94.181602
[3] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[4] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, (2016), [arXiv:1212.5605] [INSPIRE]. · Zbl 1365.81004
[5] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE]. · Zbl 1388.81166 · doi:10.1007/JHEP10(2014)030
[6] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc.83 (1977) 831 [INSPIRE]. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[7] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[8] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.128 (2005) 209 [math/0208144] [INSPIRE]. · Zbl 1095.11036
[9] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n(ℝ), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419].
[10] F.C.S. Brown and A. Levin, Multiple Elliptic Polylogarithms, arXiv:1110.6917.
[11] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE]. · doi:10.1007/JHEP10(2012)026
[12] S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor.148 (2015) 328 [arXiv:1309.5865] [INSPIRE]. · Zbl 1319.81044 · doi:10.1016/j.jnt.2014.09.032
[13] J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE]. · doi:10.1103/PhysRevLett.120.121603
[14] J.L. Bourjaily, Y.-H. He, A.J. Mcleod, M. Von Hippel and M. Wilhelm, Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms, Phys. Rev. Lett.121 (2018) 071603 [arXiv:1805.09326] [INSPIRE]. · doi:10.1103/PhysRevLett.121.071603
[15] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, JHEP01 (2019) 023 [arXiv:1809.10698] [INSPIRE]. · Zbl 1409.81162 · doi:10.1007/JHEP01(2019)023
[16] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE]. · doi:10.1103/PhysRevLett.110.251601
[17] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE]. · doi:10.1016/0550-3213(81)90199-1
[18] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE]. · doi:10.1016/0370-2693(91)90413-K
[19] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE]. · Zbl 1007.81512
[20] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
[21] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[22] L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE]. · Zbl 1306.81093 · doi:10.1007/JHEP01(2012)024
[23] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. · Zbl 1342.81159 · doi:10.1007/JHEP12(2013)049
[24] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. · Zbl 1333.81238 · doi:10.1007/JHEP06(2014)116
[25] L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE]. · doi:10.1007/JHEP10(2014)065
[26] J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE]. · doi:10.1007/JHEP03(2015)072
[27] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE]. · doi:10.1007/JHEP01(2016)053
[28] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. · doi:10.1103/PhysRevLett.117.241601
[29] L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. · Zbl 1377.81197 · doi:10.1007/JHEP02(2017)137
[30] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[31] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE]. · Zbl 1219.81227 · doi:10.1016/j.nuclphysb.2007.11.041
[32] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys.B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE]. · Zbl 1273.81201 · doi:10.1016/j.nuclphysb.2007.11.002
[33] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE]. · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[34] Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[35] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[36] L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP04 (2011) 088 [arXiv:1006.2788] [INSPIRE]. · Zbl 1250.81071 · doi:10.1007/JHEP04(2011)088
[37] B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE]. · doi:10.1103/PhysRevLett.111.091602
[38] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
[39] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
[40] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP09 (2014) 149 [arXiv:1407.1736] [INSPIRE].
[41] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE]. · doi:10.1007/JHEP01(2014)091
[42] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Am. Math. Soc.15 (2002) 497 [math/0104151]. · Zbl 1021.16017
[43] S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math.154 (2003) 63 [math/0208229]. · Zbl 1054.17024
[44] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE]. · doi:10.1103/PhysRevLett.120.161601
[45] O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257. · Zbl 0131.44201
[46] O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347. · Zbl 0131.44202
[47] J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev.D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
[48] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112 · doi:10.1016/j.nuclphysb.2009.11.022
[49] S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar N = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE]. · Zbl 1397.81347 · doi:10.1007/JHEP07(2012)174
[50] M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
[51] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[52] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. · Zbl 1203.81175 · doi:10.1016/j.nuclphysb.2009.10.013
[53] L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP11 (2009) 082 [arXiv:0904.0663] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/082
[54] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[55] V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP03 (2010) 099 [arXiv:0911.5332] [INSPIRE]. · Zbl 1271.81104 · doi:10.1007/JHEP03(2010)099
[56] The SpaSM group, SpaSM: a Sparse direct Solver Modulo p, v1.2, (2017), http://github.com/cbouilla/spasm.
[57] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. · Zbl 1306.81082 · doi:10.1007/JHEP12(2011)066
[58] N. Arkani-Hamed, Scattering amplitudes from combinatorial geometry at infinity, talk at Amplitudes 2018, Menlo Park, CA, U.S.A., 18-22 June 2018.
[59] S. Caron-Huot, L.J. Dixon, A. McLeod, M. von Hippel and G. Papathanasiou, in preparation.
[60] G. Papathanasiou, The Steinmann Cluster Bootstrap forN \[\mathcal{N} = 4\] SYM Amplitudes, talk at Amplitudes 2017, Edinburgh, U.K., 10-14 July 2017.
[61] J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP05 (2009) 046 [arXiv:0902.2987] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/046
[62] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098 · doi:10.1007/JHEP03(2010)020
[63] L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/045
[64] J.L. Bourjaily, Efficient Tree-Amplitudes in N = 4: Automatic BCFW Recursion in Mathematica, arXiv:1011.2447 [INSPIRE].
[65] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[66] J.M. Drummond, J. Foster, Ö. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.