×

Quantisation of the effective string with TBA. (English) Zbl 1342.81625

Summary: In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in \(D\) space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction – a quartic polynomial in the field derivatives – is exactly the composite field \(T\overline T\), built with the chiral components, \(T\) and \(\overline T\), of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.

MSC:

81T70 Quantization in field theory; cohomological methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. Itzykson, M.E. Peskin and J.-B. Zuber, Roughening of Wilson’s surface, Phys. Lett.B 95 (1980) 259 [INSPIRE].
[2] J.B. Kogut and J. Shigemitsu, Crossover from weak to strong coupling in SU(N) lattice gauge theories, Phys. Rev. Lett.45 (1980) 410 [Erratum ibid.45 (1980) 1217] [INSPIRE]. · doi:10.1103/PhysRevLett.45.410
[3] A. Hasenfratz, E. Hasenfratz and P. Hasenfratz, Generalized roughening transition and its effect on the string tension, Nucl. Phys.B 180 (1981) 353 [INSPIRE]. · doi:10.1016/0550-3213(81)90426-0
[4] J. Kosterlitz and D. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys.C 6 (1973) 1181 [INSPIRE].
[5] M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the free loop wave equation in the WKB approximation, Nucl. Phys.B 173 (1980) 365 [INSPIRE]. · doi:10.1016/0550-3213(80)90009-7
[6] M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys.B 180 (1981) 317 [INSPIRE]. · doi:10.1016/0550-3213(81)90423-5
[7] M. Hasenbusch and K. Pinn, Surface tension, surface stiffness and surface width of the three-dimensional Ising model on a cubic lattice, PhysicaA 192 (1993) 342 [hep-lat/9209013] [INSPIRE].
[8] M. Caselle, R. Fiore, F. Gliozzi, M. Hasenbusch and P. Provero, String effects in the Wilson loop: a high precision numerical test, Nucl. Phys.B 486 (1997) 245 [hep-lat/9609041] [INSPIRE]. · doi:10.1016/S0550-3213(96)00672-4
[9] K.J. Juge, J. Kuti and C. Morningstar, Fine structure of the QCD string spectrum, Phys. Rev. Lett.90 (2003) 161601 [hep-lat/0207004] [INSPIRE]. · doi:10.1103/PhysRevLett.90.161601
[10] B. Lucini and M. Teper, Confining strings in SU(N) gauge theories, Phys. Rev.D 64 (2001) 105019 [hep-lat/0107007] [INSPIRE]. · Zbl 0972.81107
[11] M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP07 (2002) 049 [hep-lat/0207003] [INSPIRE]. · doi:10.1088/1126-6708/2002/07/049
[12] M. Caselle, M. Pepe and A. Rago, Static quark potential and effective string corrections in the (2 + 1)-d SU(2) Yang-Mills theory, JHEP10 (2004) 005 [hep-lat/0406008] [INSPIRE]. · doi:10.1088/1126-6708/2004/10/005
[13] M. Lüscher, G. Munster and P. Weisz, How thick are chromoelectric flux tubes?, Nucl. Phys.B 180 (1981) 1 [INSPIRE]. · doi:10.1016/0550-3213(81)90151-6
[14] M. Caselle, F. Gliozzi, U. Magnea and S. Vinti, Width of long color flux tubes in lattice gauge systems, Nucl. Phys.B 460 (1996) 397 [hep-lat/9510019] [INSPIRE]. · doi:10.1016/0550-3213(95)00639-7
[15] F. Gliozzi, M. Pepe and U.-J. Wiese, The width of the confining string in Yang-Mills theory, Phys. Rev. Lett.104 (2010) 232001 [arXiv:1002.4888] [INSPIRE]. · doi:10.1103/PhysRevLett.104.232001
[16] F. Gliozzi, M. Pepe and U.-J. Wiese, The width of the color flux tube at 2-loop order, JHEP11 (2010) 053 [arXiv:1006.2252] [INSPIRE]. · Zbl 1294.81341 · doi:10.1007/JHEP11(2010)053
[17] M. Caselle et al., Rough interfaces beyond the Gaussian approximation, Nucl. Phys.B 432 (1994) 590 [hep-lat/9407002] [INSPIRE]. · doi:10.1016/0550-3213(94)90035-3
[18] M. Caselle, M. Hasenbusch and M. Panero, Comparing the Nambu-Goto string with LGT results, JHEP03 (2005) 026 [hep-lat/0501027] [INSPIRE]. · doi:10.1088/1126-6708/2005/03/026
[19] M. Caselle, M. Hasenbusch and M. Panero, High precision Monte Carlo simulations of interfaces in the three-dimensional Ising model: a comparison with the Nambu-Goto effective string model, JHEP03 (2006) 084 [hep-lat/0601023] [INSPIRE]. · Zbl 1226.82057 · doi:10.1088/1126-6708/2006/03/084
[20] N. Hari Dass and P. Majumdar, String-like behaviour of 4 − D SU(3) Yang-Mills flux tubes, JHEP10 (2006) 020 [hep-lat/0608024] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/020
[21] B. Bringoltz and M. Teper, Closed k-strings in SU(N) gauge theories: 2 + 1 dimensions, Phys. Lett.B 663 (2008) 429 [arXiv:0802.1490] [INSPIRE]. · Zbl 1328.81176
[22] A. Athenodorou, B. Bringoltz and M. Teper, The spectrum of closed loops of fundamental flux in D = 3 + 1 SU(N) gauge theories, PoS (LAT2009) 223 [arXiv:0912.3238] [INSPIRE]. · Zbl 1294.81159
[23] A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=2+1 SU(N) gauge theories,JHEP05 (2011) 042[arXiv:1103.5854] [INSPIRE]. · Zbl 1296.81078 · doi:10.1007/JHEP05(2011)042
[24] A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=3+1 SU(N) gauge theories,JHEP02 (2011) 030[arXiv:1007.4720] [INSPIRE]. · Zbl 1294.81159 · doi:10.1007/JHEP02(2011)030
[25] M. Caselle and M. Zago, A new approach to the study of effective string corrections in LGTs, Eur. Phys. J.C 71 (2011) 1658 [arXiv:1012.1254] [INSPIRE]. · doi:10.1140/epjc/s10052-011-1658-6
[26] M. Billó, M. Caselle and R. Pellegrini, New numerical results and novel effective string predictions for Wilson loops, JHEP01 (2012) 104 [Erratum ibid.1304 (2013) 097] [arXiv:1107.4356] [INSPIRE]. · Zbl 1306.81077 · doi:10.1007/JHEP01(2012)104
[27] A. Mykkanen, The static quark potential from a multilevel algorithm for the improved gauge action, JHEP12 (2012) 069 [arXiv:1209.2372] [INSPIRE].
[28] A. Athenodorou and M. Teper, Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N) gauge theories, JHEP06 (2013) 053 [arXiv:1303.5946] [INSPIRE]. · doi:10.1007/JHEP06(2013)053
[29] M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP07 (2004) 014 [hep-th/0406205] [INSPIRE]. · doi:10.1088/1126-6708/2004/07/014
[30] O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP06 (2009) 012 [arXiv:0903.1927] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/012
[31] H.B. Meyer, Poincaré invariance in effective string theories, JHEP05 (2006) 066 [hep-th/0602281] [INSPIRE]. · doi:10.1088/1126-6708/2006/05/066
[32] O. Aharony, Z. Komargodski and A. Schwimmer, The effective action on the confining string, talk given at String 2009, June 22-26, Roma, Italy (2009).
[33] O. Aharony and M. Field, On the effective theory of long open strings, JHEP01 (2011) 065 [arXiv:1008.2636] [INSPIRE]. · Zbl 1214.81178 · doi:10.1007/JHEP01(2011)065
[34] M. Billó, M. Caselle, F. Gliozzi, M. Meineri and R. Pellegrini, The Lorentz-invariant boundary action of the confining string and its universal contribution to the inter-quark potential, JHEP05 (2012) 130 [arXiv:1202.1984] [INSPIRE]. · Zbl 1348.81351 · doi:10.1007/JHEP05(2012)130
[35] F. Gliozzi, Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios, Phys. Rev.D 84 (2011) 027702 [arXiv:1103.5377] [INSPIRE].
[36] O. Aharony and M. Dodelson, Effective string theory and nonlinear Lorentz invariance, JHEP02 (2012) 008 [arXiv:1111.5758] [INSPIRE]. · Zbl 1309.81190 · doi:10.1007/JHEP02(2012)008
[37] F. Gliozzi and M. Meineri, Lorentz completion of effective string (and p-brane) action, JHEP08 (2012) 056 [arXiv:1207.2912] [INSPIRE]. · Zbl 1397.81244 · doi:10.1007/JHEP08(2012)056
[38] M. Meineri, Lorentz completion of effective string action, PoS (Confinement X) 041 [arXiv:1301.3437] [INSPIRE]. · Zbl 1397.81244
[39] O. Aharony, M. Field and N. Klinghoffer, The effective string spectrum in the orthogonal gauge, JHEP04 (2012) 048 [arXiv:1111.5757] [INSPIRE]. · Zbl 1348.81347 · doi:10.1007/JHEP04(2012)048
[40] S. Dubovsky, R. Flauger and V. Gorbenko, Effective string theory revisited, JHEP09 (2012) 044 [arXiv:1203.1054] [INSPIRE]. · doi:10.1007/JHEP09(2012)044
[41] O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP05 (2013) 118 [arXiv:1302.6257] [INSPIRE]. · Zbl 1342.81366 · doi:10.1007/JHEP05(2013)118
[42] J. Arvis, The exact \(q\overline{q}\) potential in Nambu string theory, Phys. Lett.B 127 (1983) 106 [INSPIRE].
[43] P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys.B 56 (1973) 109 [INSPIRE]. · doi:10.1016/0550-3213(73)90223-X
[44] L. Mezincescu and P.K. Townsend, 3D strings and other anyonic things, Fortsch. Phys.60 (2012) 1076 [arXiv:1111.3384] [INSPIRE]. · Zbl 1251.81078 · doi:10.1002/prop.201200001
[45] O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP12 (2010) 058 [arXiv:1008.2648] [INSPIRE]. · Zbl 1294.81150 · doi:10.1007/JHEP12(2010)058
[46] S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity, JHEP09 (2012) 133 [arXiv:1205.6805] [INSPIRE]. · Zbl 1397.83036 · doi:10.1007/JHEP09(2012)133
[47] S. Dubovsky, R. Flauger and V. Gorbenko, Evidence for a new particle on the worldsheet of the QCD flux tube, arXiv:1301.2325 [INSPIRE]. · Zbl 1397.83036
[48] B.B. Brandt, Probing boundary-corrections to Nambu-Goto open string energy levels in 3D SU(2) gauge theory, JHEP02 (2011) 040 [arXiv:1010.3625] [INSPIRE]. · Zbl 1294.81170 · doi:10.1007/JHEP02(2011)040
[49] A.B. Zamolodchikov, Expectation value of composite field \(T\overline{T}\) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
[50] K. Dietz and T. Filk, On the renormalization of string functionals, Phys. Rev.D 27 (1983) 2944.
[51] A. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys.B 358 (1991) 524 [INSPIRE]. · doi:10.1016/0550-3213(91)90423-U
[52] A. Zamolodchikov, Thermodynamic Bethe Ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys.B 342 (1990) 695 [INSPIRE]. · doi:10.1016/0550-3213(90)90333-9
[53] T.R. Klassen and E. Melzer, Spectral flow between conformal field theories in (1 + 1)-dimensions, Nucl. Phys.B 370 (1992) 511 [INSPIRE]. · doi:10.1016/0550-3213(92)90422-8
[54] P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys.B 482 (1996) 639 [hep-th/9607167] [INSPIRE]. · Zbl 0925.82044 · doi:10.1016/S0550-3213(96)00516-0
[55] L. Vepstas, An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions, Numer. Alg.s47 (2008) 211 [math/0702243]. · Zbl 1157.65005
[56] H. Braden, E. Corrigan, P. Dorey and R. Sasaki, Affine Toda field theory and exact S matrices, Nucl. Phys.B 338 (1990) 689 [INSPIRE]. · Zbl 1029.81504 · doi:10.1016/0550-3213(90)90648-W
[57] M. Caselle, L. Castagnini, A. Feo, F. Gliozzi and M. Panero, Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions I — The confining phase, JHEP06 (2011) 142 [arXiv:1105.0359] [INSPIRE]. · Zbl 1301.81113 · doi:10.1007/JHEP06(2011)142
[58] T.R. Klassen and E. Melzer, The Thermodynamics of purely elastic scattering theories and conformal perturbation theory, Nucl. Phys.B 350 (1991) 635 [INSPIRE]. · doi:10.1016/0550-3213(91)90159-U
[59] T.R. Klassen and E. Melzer, Purely elastic scattering theories and their ultraviolet limits, Nucl. Phys.B 338 (1990) 485 [INSPIRE]. · doi:10.1016/0550-3213(90)90643-R
[60] V. Fateev and A. Zamolodchikov, Conformal field theory and purely elastic S matrices, Int. J. Mod. Phys.A 5 (1990) 1025 [INSPIRE]. · Zbl 0737.17014
[61] P. Christe and G. Mussardo, Integrable systems away from criticality: the Toda field theory and S matrix of the tricritical Ising model, Nucl. Phys.B 330 (1990) 465 [INSPIRE]. · doi:10.1016/0550-3213(90)90119-X
[62] P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl. Phys.B 515 (1998) 575 [hep-th/9706140] [INSPIRE]. · Zbl 0945.81055 · doi:10.1016/S0550-3213(97)00838-9
[63] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: excited state energies, Nucl. Phys.B 489 (1997) 487 [hep-th/9607099] [INSPIRE]. · Zbl 0925.81325 · doi:10.1016/S0550-3213(97)00022-9
[64] M.J. Martins, Complex excitations in the thermodynamic Bethe ansatz approach, Phys. Rev. Lett.67 (1991) 419 [INSPIRE]. · Zbl 0990.82516 · doi:10.1103/PhysRevLett.67.419
[65] P. Fendley, Excited state thermodynamics, Nucl. Phys.B 374 (1992) 667 [hep-th/9109021] [INSPIRE]. · Zbl 0992.81516 · doi:10.1016/0550-3213(92)90404-Y
[66] A. Kuniba and T. Nakanishi, Spectra in conformal field theories from the Rogers dilogarithm, Mod. Phys. Lett.A 7 (1992) 3487 [hep-th/9206034] [INSPIRE]. · Zbl 1021.81842
[67] P. Goddard, A. Kent and D.I. Olive, Virasoro algebras and coset space models, Phys. Lett.B 152 (1985) 88 [INSPIRE]. · Zbl 0661.17015
[68] A. Fring and R. Koberle, Factorized scattering in the presence of reflecting boundaries, Nucl. Phys.B 421 (1994) 159 [hep-th/9304141] [INSPIRE]. · Zbl 0990.81762 · doi:10.1016/0550-3213(94)90229-1
[69] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys.A 9 (1994) 3841 [Erratum ibid.A 9 (1994) 4353] [hep-th/9306002] [INSPIRE]. · Zbl 0985.81714
[70] P. Dorey, R. Tateo and G. Watts, Generalizations of the Coleman-Thun mechanism and boundary reflection factors, Phys. Lett.B 448 (1999) 249 [hep-th/9810098] [INSPIRE].
[71] P. Dorey, C. Rim and R. Tateo, Exact g-function flow between conformal field theories, Nucl. Phys.B 834 (2010) 485 [arXiv:0911.4969] [INSPIRE]. · Zbl 1204.81153 · doi:10.1016/j.nuclphysb.2010.03.010
[72] J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys.B 324 (1989) 581 [INSPIRE]. · doi:10.1016/0550-3213(89)90521-X
[73] A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nucl. Phys.B 453 (1995) 581 [hep-th/9503227] [INSPIRE]. · Zbl 0951.81519 · doi:10.1016/0550-3213(95)00435-U
[74] P. Dorey, A. Pocklington, R. Tateo and G. Watts, TBA and TCSA with boundaries and excited states, Nucl. Phys.B 525 (1998) 641 [hep-th/9712197] [INSPIRE]. · Zbl 1047.82516 · doi:10.1016/S0550-3213(98)00339-3
[75] N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE]. · Zbl 1342.83237
[76] D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP08 (2012) 134 [arXiv:1203.1913] [INSPIRE]. · doi:10.1007/JHEP08(2012)134
[77] L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys.A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE]. · Zbl 1204.81134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.