×

The \(M_2\) model for dose simulation in radiation therapy. (English) Zbl 07503197

Summary: The transport of photons and electrons is studied in the field of radiotherapy to compute the dose, that is, the quantity of energy transferred to the medium by a beam of particles at each position. A kinetic model is proposed, and to decrease the computation times, it is reduced through a moment extraction. Entropy-based angular moment models of order up to two \((M_1\) and \(M_2\) models) are shown to provide accurate results compared to a reference code with much lower computational costs.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

PENELOPE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alldredge, G. W.; Hauck, C. D.; O’Leary, D. P.; Tits, A. L., Adaptive change of basis in entropy-based moment closures for linear kinetic equations, J. Comp. Phys., 74, 4 · Zbl 1349.82066
[2] Alldredge, G. W.; Hauck, C. D.; Tits, A. L., High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM J. Sci. Comput., 34, 4, 361-391 · Zbl 1297.82032
[3] Anile, A. M.; Pennisi, S., Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors, Phys. Rev. B, 46, 13186-13193 · Zbl 1174.82324
[4] Barò, J.; Sempau, J.; Fernández-Varea, J. M.; Salvat, F., Penelope: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons in matter, Nucl. Instrum. Methods, 100, 31-46
[5] Barò, J.; Sempau, J.; Fernández-Varea, J. M.; Salvat, F., Penelope: An algorithm and computer code for Monte Carlo simulation of electron-photon shower, CIEMAT Technical Report 799. CIEMAT: Madrid. Accessed 15 March 2016. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/094/38094326.pdf
[6] Berthon, C.; Charrier, P.; Dubroca, B., An HLLC scheme to solve the M_1 model of radiative transfer in two space dimensions, J. Sci. Comp., 31, 3, 347-389 · Zbl 1133.85003
[7] Borwein, J.; Lewis, A., Duality relationships for entropy-like minimization problems, SIAM J. Control Optim., 29, 2, 325-338 · Zbl 0797.49030
[8] Borwein, J.; Lewis, A., Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57, 15-48 · Zbl 0778.90049
[9] Borwein, J.; Lewis, A., Partially finite convex programming: Part II, Math. Program., 57, 49-83 · Zbl 0778.90050
[10] Caron, J.; Feugeas, J. -L.; Dubroca, B.; Kantor, G.; Dejean, C.; Birindelli, G.; Pichard, T.; Nicolaï, Ph; d’Humières, E.; Frank, M.; Tikhonchuk, V., Deterministic model for the transport of energetic particles. Application in the electron radiotherapy, Eur. J. Med. Phys., 31, 912-921
[11] Dubroca, B.; Feugeas, J. L., Hiérarchie des modèles aux moments pour le transfert radiatif, C.R. Acad. Sci. Paris, 329, 915-920 · Zbl 0940.65157
[12] Duclous, R.; Dubroca, B.; Frank, M., A deterministic partial differential equation model for dose calculation in electron radiotherapy, Phys. Med. Biol., 55, 3843-3857
[13] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure App. Math., 2, 4, 331-407 · Zbl 0037.13104
[14] Guisset, S.; Brull, S.; Dubroca, B.; Humières, E.; Karpov, S.; Potapenko, I., Asymptotic-preserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime, Comm. Comp. Phys. · Zbl 1373.76169
[15] Guisset, S.; Moreau, J. G.; Nuter, R.; Brull, S.; Humieres, E.; Dubroca, B.; Tikhonchuk, V. T., Limits of the M_1 and M_2 angular moments models for kinetic plasma physics studies, J. Phys. A: Mathematical and Theoretical. · Zbl 1329.82124
[16] Hauck, C.; McClarren, R., Positive P_N closures, SIAM J. Sci. Comput., 32, 5, 2603-2626 · Zbl 1385.70034
[17] Hauck, C. D., High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9, 1, 187-205 · Zbl 1284.82050
[18] Hensel, H.; Iza-Teran, R.; Siedow, N., Deterministic model for dose calculation in photon radiotherapy, Phys. Med. Biol., 51, 675-693
[19] Rosa, S.; Mascali, G.; Romano, V., Exact maximum entropy closure of the hydrodynamical model for SI semiconductors: The 8-moment case, SIAM J. Appl. Math., 70, 3, 710-734 · Zbl 1197.82118
[20] Leveremore, C. D., Relating Eddington factors to flux limiters, J. Quant. Spectros. Radiat. Transf., 31, 149-160
[21] Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 5-6, 1021-1065 · Zbl 1081.82619
[22] Lewis, E. E.; Miller, W. F., Computational Methods of Neutron Transport, La Grange Park, IL: American Nuclear Society · Zbl 0594.65096
[23] Mallet, J.; Brull, S.; Dubroca, B., An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons, Comm. Comp. Phys., 15, 2, 422-450 · Zbl 1388.65043
[24] Mallet, J.; Brull, S.; Dubroca, B., General moment system for plasma physics based on minimum entropy principle, Kinet. Relat. Models., 8, 3, 533-558 · Zbl 1328.35244
[25] McClarren, R. G.; Hauck, C. D., Robust and accurate filtered spherical harmonics expansion for radiative transfer, J. Comp. Phys., 5597-5614 · Zbl 1193.82043
[26] Olbrant, E.; Frank, M., Generalized Fokker-Planck theory for electron and photon transport in biological tissues: Application to radiotherapy, Comput. Math. Methods Med., 11, 4, 313-339 · Zbl 1202.92045
[27] Pichard, T.; Alldredge, G. W.; Brull, S.; Dubroca, B.; Frank, M., An approximation of the M_2 closure: Application to radiotherapy dose simulation. Submitted for publication in J. Sci. Comput. · Zbl 1386.82064
[28] Pichard, T.; Aregba-Driollet, D.; Brull, S.; Dubroca, B.; Frank, M., Relaxation schemes for the M_1 model with space-dependent flux: Application to radiotherapy dose calculation, Commun. Comp. Phys., 168-191 · Zbl 1388.65089
[29] Pomraning, G. C., The Fokker-Planck operator as an asymptotic limit, Math. Mod. Meth. Appl. Sci., 2, 1, 21-36 · Zbl 0796.45013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.