×

Technical challenges of the Large Hadron Collider experiments (ATLAS and CMS). (English) Zbl 1366.81009

Summary: This review article introduces the design of the general purpose experiments ATLAS and CMS, which independently discovered the Higgs boson, showing how generic features are motivated by the characteristics needed to explore the physics landscape made accessible by the Large Hadron Collider accelerator, whose high collision rate creates an extremely challenging operating environment for instrumentation. Examples of the very different component designs chosen by the two experiment collaborations are highlighted, as an introduction to briefly describing techniques used in the construction of some of these elements and, subsequently, in the assembly of both detection systems in their respective underground caverns.

MSC:

81-03 History of quantum theory
01A60 History of mathematics in the 20th century
01A61 History of mathematics in the 21st century
81-05 Experimental work for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] JINST 3 pp 08003– (2008)
[2] JINST 3 pp 08004S– (2008) · doi:10.1088/1748-0221/3/08/S08004
[3] Physical Review Letters 13 pp 312– (1964)
[4] PHYS LETT 12 pp 132– (1964)
[5] Physical Review Letters 13 pp 585– (1964) · doi:10.1103/PhysRevLett.13.585
[6] Physiological Reviews 145 pp 1156– (1966) · doi:10.1103/PhysRev.145.1156
[7] Physiological Reviews 155 pp 1554– (1967) · doi:10.1103/PhysRev.155.1554
[8] JINST 3 pp 08001S– (2008) · doi:10.1088/1748-0221/3/08/S08001
[9] NUCL PHYS 22 pp 579– (1961) · doi:10.1016/0029-5582(61)90469-2
[10] Physical Review Letters 19 pp 1264– (1967) · doi:10.1103/PhysRevLett.19.1264
[11] NUCL INTRUM METHODS A 558 pp 388– (2006) · doi:10.1016/j.nima.2005.11.212
[12] J PHYS G 33 pp 1– (2006) · doi:10.1088/0954-3899/33/1/001
[13] NUCL INSTRUM METHODS 578 pp 98– (2007) · doi:10.1016/j.nima.2007.04.157
[14] 716 pp 1– (2012) · doi:10.1016/j.physletb.2012.08.020
[15] The ATLAS Collaboration, Science 338 (6114) pp 1576– (2012) · doi:10.1126/science.1232005
[16] 716 pp 30– (2012) · doi:10.1016/j.physletb.2012.08.021
[17] The CMS Collaboration, Science 338 (6114) pp 1569– (2012) · doi:10.1126/science.1230816
[18] Ellis, Annual Review of Nuclear and Particle Science 44 (1) pp 609– (1994) · doi:10.1146/annurev.ns.44.120194.003141
[19] Annual Review of Nuclear and Particle Science 56 pp 375– (2006) · doi:10.1146/annurev.nucl.54.070103.181209
[20] Stapnes, Nature 448 (7151) pp 290– (2007) · doi:10.1038/nature06078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.